Suppr超能文献

黎曼流形上随机非凸优化的更快一阶方法

Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds.

作者信息

Zhou Pan, Yuan Xiao-Tong, Yan Shuicheng, Feng Jiashi

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Feb;43(2):459-472. doi: 10.1109/TPAMI.2019.2933841. Epub 2021 Jan 8.

Abstract

First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an ϵ-approximate stationary point within [Formula: see text] stochastic gradient evaluations, beating the best-known complexity [Formula: see text]; for online optimization, R-SPIDER is shown to converge with [Formula: see text] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.

摘要

一阶非凸黎曼优化算法最近在包括主成分分析和低秩矩阵补全在内的结构化机器学习问题中受到欢迎。本文提出了一种高效的黎曼随机路径积分微分估计器(R-SPIDER)算法,用于解决有限和以及在线黎曼非凸最小化问题。R-SPIDER的核心是一个递归半随机梯度估计器,它不仅可以在指数映射和平行传输下,而且可以在一般的回缩和向量传输操作下准确估计黎曼梯度。与先前的黎曼算法相比,这种递归梯度估计机制使R-SPIDER在一阶预言机复杂度方面具有更低的计算成本。具体而言,对于具有n个分量的有限和问题,证明R-SPIDER在[公式:见原文]次随机梯度评估内收敛到一个ϵ-近似驻点,优于最著名的复杂度[公式:见原文];对于在线优化,R-SPIDER被证明以[公式:见原文]的复杂度收敛,据我们所知,这是在线黎曼优化的第一个非渐近结果。对于梯度主导函数的特殊情况,我们进一步开发了一种具有改进线性收敛速度的R-SPIDER变体。大量实验结果证明了所提出算法相对于现有黎曼非凸优化方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验