Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Cell. 2019 Aug 8;178(4):820-834.e14. doi: 10.1016/j.cell.2019.06.033.
Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.
在微生物中划定具有生态意义的种群对于确定它们在环境和宿主相关微生物组中的作用非常重要。在这里,我们引入了一种近期基因流的度量标准,当应用于共存微生物时,它可以识别出由强烈基因流不连续区分的与其近亲一致的遗传和生态单位。然后,我们开发了一个管道来识别这些单位内显示出差异适应的基因组区域,并允许将种群映射到环境变量或宿主关联上。使用这种反向生态学方法,我们表明人类共生菌 Ruminococcus gnavus 分裂成明显划分的种群,这些种群与健康和疾病的关联不同。通过这种最近基因流的方式定义种群将促进使用为植物和动物开发的生态和进化理论分析细菌和古菌基因组,从而允许在整个生物学中测试统一原则。