Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
Biochim Biophys Acta Gen Subj. 2019 Nov;1863(11):129409. doi: 10.1016/j.bbagen.2019.08.002. Epub 2019 Aug 6.
Previous glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species.
In this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures.
The neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths.
Combining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins.
Our data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.
先前对双翅目和鳞翅目物种的糖蛋白系统发生比较揭示了它们 N-聚糖的阴离子和两性离子修饰的变化;因此,我们希望探索种属和目特异性的糖组学变化是否会扩展到膜翅目,其中包括农业和过敏学上具有重要意义的社会性物种——蜜蜂。
在这项研究中,我们采用离线液相色谱/质谱联用方法,结合酶和化学处理,分析雄蜂幼虫和蜜蜂毒液中的 N-聚糖,以促进同型结构的定义。
中性幼虫 N-聚糖组主要由寡甘露糖和少甘露糖结构组成,而中性毒液 N-聚糖组则显示出更多加工的杂种和复合形式,带有触角 N-乙酰半乳糖胺、半乳糖和岩藻糖残基,包括类 Lewis 表位;幼虫和毒液中的阴离子池含有各种各样的带有唾液酸、硫酸和磷酸乙醇胺修饰的 N-聚糖,最多带有三个触角。与蜜蜂蜂王浆相比,幼虫和毒液样本中含有更多的岩藻糖基和较少的甘露糖基杂种聚糖,触角长度也不同。
将幼虫和毒液的当前数据与我们之前在蜂王浆上发表的数据结合起来,可以提出一个约 150 种组成的蜜蜂全 N-聚糖组,此外还有 20 种之前在特定毒液糖蛋白上鉴定的组成。
我们的数据表明,蜜蜂中 N-聚糖的核心和触角区域存在组织特异性修饰,并加强了昆虫能够进行广泛加工以产生相当复杂的阴离子寡糖结构的概念。