Son Nguyen Thi Kim, Dong Nguyen Phuong, Long Hoang Viet, Son Le Hoang, Khastan Alireza
Faculty of Natural Science, Hanoi Metropolitan University, Hanoi, Viet Nam.
Department of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam.
ISA Trans. 2020 Feb;97:296-316. doi: 10.1016/j.isatra.2019.08.006. Epub 2019 Aug 5.
Quadratic cost functions estimation in the linear optimal control systems governed by differential equations (DEs) or partial differential equations (PDEs) has a well-established discipline in mathematics with many interfaces to science and engineering. During its development, the impact of uncertain phenomena to objective function and the complexity of the systems to be controlled have also increased significantly. Many engineering problems like magnetohydromechanical, electromagnetical and signal analysis for the transmission and propagation of electrical signals under uncertain environment can be dealt with. In this paper, we study the optimal control problem with operating a fractional DEs and PDEs at minimum quadratic objective function in the framework of neutrosophic environment and granular computing. However, there has been no studies appeared on the neutrosophic calculus of fractional order. Hence, we will introduce some derivatives of fractional order, including the neutrosophic Riemann-Liouville fractional derivatives and neutrosophic Caputo fractional derivatives. Next, we propose a new setting of two important problems in engineering. In the first problem, we investigate the numerical and exact solutions of some neutrosophic fractional DEs and neutrosophic telegraph PDEs. In the second problem, we study the optimality conditions together with the simulation of states of a linear quadratic optimal control problem governed by neutrosophic fractional DEs and PDEs. Some key applications to DC motor model and one-link robot manipulator model are investigated to prove the effectiveness and correctness of the proposed method.
在由常微分方程(DEs)或偏微分方程(PDEs)控制的线性最优控制系统中,二次成本函数估计在数学领域有着成熟的学科体系,并且与科学和工程有许多交叉领域。在其发展过程中,不确定现象对目标函数的影响以及待控制系统的复杂性也显著增加。许多工程问题,如磁流体力学、电磁学以及在不确定环境下电信号传输和传播的信号分析等问题都可以得到解决。在本文中,我们研究在中智环境和粒度计算框架下,以最小二次目标函数运行分数阶DEs和PDEs的最优控制问题。然而,目前尚未有关于分数阶中智微积分的研究出现。因此,我们将引入一些分数阶导数,包括中智黎曼 - 刘维尔分数阶导数和中智卡普托分数阶导数。接下来,我们提出工程中两个重要问题的新设定。在第一个问题中,我们研究一些中智分数阶DEs和中智电报PDEs的数值解和精确解。在第二个问题中,我们研究由中智分数阶DEs和PDEs控制的线性二次最优控制问题的最优性条件以及状态模拟。通过对直流电动机模型和单连杆机器人操纵器模型的一些关键应用进行研究,以证明所提方法的有效性和正确性。