Magin Richard L
University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois 60607-7052, USA.
Crit Rev Biomed Eng. 2004;32(1):1-104. doi: 10.1615/critrevbiomedeng.v32.i1.10.
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub-threshold nerve propagation. By expanding the range of mathematical operations to include fractional calculus, we can develop new and potentially useful functional relationships for modeling complex biological systems in a direct and rigorous manner.
分数阶微积分(非整数阶的积分和微分运算)并不常用于对生物系统进行建模。尽管基本的数学思想早在很久以前就由数学家莱布尼茨(1695年)、刘维尔(1834年)、黎曼(1892年)等人提出,并在19世纪90年代被奥利弗·亥维赛引起工程界的关注,但直到1974年,奥尔德姆和斯帕尼尔才出版了第一本关于该主题的书籍。最近的专著和研讨会论文集突出了分数阶微积分在物理学、连续介质力学、信号处理和电磁学中的应用,但生物工程领域的应用实例却很少。这令人惊讶,因为当分数阶微积分的方法被定义为拉普拉斯或傅里叶卷积积时,它适用于解决生物医学研究中的许多问题。例如,科尔(1933年)和霍奇金(1946年)早期对神经细胞膜电特性和电信号传播的研究,可用分数阶微分方程很好地描述。其解涉及将指数函数推广到米塔格 - 莱夫勒函数,这能更好地拟合观测到的细胞膜数据。分数阶导数在粘弹性材料上的平行应用以自然的方式建立了遗传积分以及用于生物材料建模的幂律(努廷/斯科特·布莱尔)应力 - 应变关系。在这篇综述中,我将遵循亥维赛的原始方法介绍分数阶运算的概念,展示分数阶微积分对工程中感兴趣的良好行为函数(阶跃、斜坡、脉冲、正弦)的基本运算,并给出来自电化学、物理学、生物工程和生物物理学的具体例子。分数阶导数准确地描述了诸如热传递、电极/电解质行为和亚阈值神经传导等常见工程问题中出现的自然现象。通过将数学运算的范围扩展到包括分数阶微积分,我们可以以直接且严格的方式开发新的、可能有用的函数关系,用于对复杂生物系统进行建模。