Suppr超能文献

基于拓扑优化和选择性激光熔化技术制备的 Ti6Al4V 晶格结构的力学性能调控。

Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.

机构信息

Institute for Laser Engineering, Beijing University of Technology, Pingleyuan No.100, Chaoyang Dist., Beijing, 100124, China.

Shanghai Institute of Satellite Engineering, Huaning Road No.100, Minhang Dist., Shanghai, 201100, China.

出版信息

J Mech Behav Biomed Mater. 2019 Nov;99:225-239. doi: 10.1016/j.jmbbm.2019.06.021. Epub 2019 Jun 21.

Abstract

This paper investigates the effect of porosity and unit cell size variation in topology optimized (TOP) and selective laser melting (SLM) fabricated Ti6Al4V lattice structure on the mechanical properties including compressive strength, failure mechanism and dynamic elastic modulus. Meanwhile, mathematical relations between mechanical properties and geometric parameters are obtained based on Gibson-Ashby model. The results show that both ultimate compressive strength (σ = 23∼498 MPa) and dynamic elastic modulus (E = 3.5∼55.47 GPa) of TOP lattice structures gradually decrease with the increase in porosity and unit cell size. The analysis combining experimental and numerical results indicates that TOP lattice structures are elastic-brittle porous material and have two failure mechanisms. The numerical predicted stress-strain curves are compared with the experimental ones. The numerical models incorporating the Johnson-Cook damage model could predict the slip direction of 45° failure band and ultimate compressive strength. Classical Gibson-Ashby model was used to predict the relation between relative density and mechanical properties of lattice structures. The exponential factors (n) of fitted models are obviously affected by unit cell size, which are determined by the number of unit cells in compressive test and SLM manufacturability in dynamic elastic modulus test. A 3D Modulus-Density-Unit Cell Size model is innovatively proposed, which can provide theoretical basis of tailoring orthopedic implant filled with functional gradient TOP lattice structures.

摘要

本文研究了拓扑优化(TOP)和选择性激光熔化(SLM)制造的 Ti6Al4V 晶格结构的孔隙率和单元尺寸变化对机械性能的影响,包括压缩强度、失效机制和动态弹性模量。同时,基于 Gibson-Ashby 模型获得了机械性能与几何参数之间的数学关系。结果表明,TOP 晶格结构的极限抗压强度(σ=23∼498 MPa)和动态弹性模量(E=3.5∼55.47 GPa)均随孔隙率和单元尺寸的增加而逐渐降低。结合实验和数值结果的分析表明,TOP 晶格结构为弹性脆性多孔材料,具有两种失效机制。数值预测的应力-应变曲线与实验结果进行了比较。纳入 Johnson-Cook 损伤模型的数值模型可以预测 45°失效带和极限抗压强度的滑移方向。经典的 Gibson-Ashby 模型用于预测晶格结构的相对密度与机械性能之间的关系。拟合模型的指数因子(n)明显受单元尺寸的影响,这取决于压缩试验中的单元数量和动态弹性模量试验中的 SLM 制造能力。创新性地提出了一种 3D 模量-密度-单元尺寸模型,可为填充功能梯度 TOP 晶格结构的矫形植入物的定制提供理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验