Suppr超能文献

第二代化学计量学数学模型预测油砂尾矿甲烷排放。

Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings.

机构信息

Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, 96 Frelinghuysen Road Piscataway, NJ 08854-8018, USA; Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada.

出版信息

Sci Total Environ. 2019 Dec 1;694:133645. doi: 10.1016/j.scitotenv.2019.133645. Epub 2019 Jul 31.

Abstract

Microbial metabolism of fugitive hydrocarbons produces greenhouse gas (GHG) emissions from oil sands tailings ponds (OSTP) and end pit lakes (EPL) that retain fluid tailings from surface mining of oil sands ores. Predicting GHG production, particularly methane (CH), would help oil sands operators mitigate tailings emissions and may assist regulators evaluating the trajectory of reclamation scenarios. Using empirical datasets from laboratory incubation of OSTP sediments with pertinent hydrocarbons, we developed a stoichiometric model for CH generation by indigenous microbes. This model improved on previous first-approximation models by considering long-term biodegradation kinetics for 18 relevant hydrocarbons from three different oil sands operations, lag times, nutrient limitations, and microbial growth and death rates. Laboratory measurements were used to estimate model parameter values and to validate the new model. Goodness of fit analysis showed that the stoichiometric model predicted CH production well; normalized mean square error analysis revealed that it surpassed previous models. Comparison of model predictions with field measurements of CH emissions further validated the new model. Importantly, the model also identified in-situ parameters that are currently lacking but are needed to enable future robust modeling of CH production from OSTP and EPL in-situ.

摘要

油砂尾矿池(OSTP)和终坑湖(EPL)中,微生物会代谢逸散性碳氢化合物,从而产生温室气体(GHG)排放。这些水保留了油砂矿石露天开采的地表尾矿。预测 GHG 排放,特别是甲烷(CH)的排放,将有助于油砂运营商减轻尾矿排放,并可能有助于监管机构评估复垦情景的轨迹。本研究利用从 OSTP 沉积物与相关碳氢化合物进行实验室培养的经验数据集,开发了一种用于生成土著微生物 CH 的化学计量模型。该模型通过考虑来自三个不同油砂作业的 18 种相关碳氢化合物的长期生物降解动力学、滞后时间、营养限制以及微生物生长和死亡率,改进了之前的初步模型。实验室测量用于估计模型参数值并验证新模型。拟合优度分析表明,化学计量模型能够很好地预测 CH 的生成;归一化均方根误差分析表明,它优于以前的模型。模型预测与 CH 排放的现场测量结果的比较进一步验证了新模型。重要的是,该模型还确定了目前缺乏但需要的原位参数,以便未来能够对 OSTP 和 EPL 原位 CH 生成进行稳健建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验