Suppr超能文献

采用响应面法优化稻壳去除水溶液中钍的工艺。

Process optimization using response surface methodology for the removal of thorium from aqueous solutions using rice-husk.

机构信息

Center for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Victoria, 3001, Australia; Chemical and Environmental Engineering, School of Engineering, RMIT University, Victoria, 3001, Australia; Department of Chemical Engineering, M V J College of Engineering, Near ITPB Whitefield, Kadugodi, Bengaluru, Karnataka, 560067. India.

Center for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Victoria, 3001, Australia.

出版信息

Chemosphere. 2019 Dec;237:124488. doi: 10.1016/j.chemosphere.2019.124488. Epub 2019 Jul 30.

Abstract

The adsorptive capability of rice-husk for the sorption of thorium ions from aqueous solutions in batch mode was studied. The key process variables (initial metal ion concentration, initial solution pH and S/L (solid-to-liquid ratio) were optimized for achieving maximum bioremoval efficiency (B%) by employing the Box-Behnken design (33) in response surface methodology (RSM). A quadratic model developed by fitting the experimental data predicted 93% of the responses and estimated the local maximum of B% as >99% for an initial ThIV concentration of 150  g/L, S/L ratio of 5, and an initial pH of 4, and the reported biosorption capacity (qe) is 15.95 mg/g for the same conditions. Freundlich isotherm (R = 0.9841) and pseudo-first-order (R = 0.9416) kinetic models had the best concurrence with the experimental data in the thorium concentration range used implying the sorption mechanism involves surface biosorption and intraparticle diffusion.

摘要

采用 Box-Behnken 设计(33)在响应面法(RSM)中优化了关键工艺变量(初始金属离子浓度、初始溶液 pH 值和固液比(S/L)),以实现最大生物去除效率(B%),研究了稻壳在批处理模式下从水溶液中吸附钍离子的吸附能力。通过拟合实验数据开发的二次模型预测了 93%的响应,并估计在初始 ThIV 浓度为 150  g/L、S/L 比为 5 和初始 pH 值为 4 的情况下,B%的局部最大值>99%,在相同条件下报道的生物吸附容量(qe)为 15.95 mg/g。在所用的钍浓度范围内,Freundlich 等温线(R = 0.9841)和拟一级动力学(R = 0.9416)模型与实验数据具有最佳一致性,表明吸附机制涉及表面生物吸附和颗粒内扩散。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验