IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):455-462. doi: 10.1109/TCBB.2019.2934102. Epub 2021 Apr 8.
The protein folding problem (PFP) is an important issue in bioinformatics and biochemical physics. One of the most widely studied models of protein folding is the hydrophobic-polar (HP) model introduced by Dill. The PFP in the three-dimensional (3D) lattice HP model has been shown to be NP-complete; the proposed algorithms for solving the problem can therefore only find near-optimal energy structures for most long benchmark sequences within acceptable time periods. In this paper, we propose a novel algorithm based on the branch-and-bound approach to solve the PFP in the 3D lattice HP model. For 10 48-monomer benchmark sequences, our proposed algorithm finds the lowest energies so far within comparable computation times than previous methods.
蛋白质折叠问题(PFP)是生物信息学和生物物理化学中的一个重要问题。蛋白质折叠的一个最广泛研究的模型是由 Dill 引入的疏水-极性(HP)模型。在三维(3D)晶格 HP 模型中的 PFP 已被证明是 NP 完全的;因此,提出的解决问题的算法只能在可接受的时间段内为大多数长基准序列找到接近最优的能量结构。在本文中,我们提出了一种基于分支定界方法的新算法,用于解决 3D 晶格 HP 模型中的 PFP。对于 1048 个单体基准序列,我们提出的算法在可比的计算时间内找到了迄今为止最低的能量,优于以前的方法。