Su Ran, Hsain H Alex, Wu Ming, Zhang Dawei, Hu Xinghao, Wang Zhipeng, Wang Xiaojing, Li Fa-Tang, Chen Xuemin, Zhu Lina, Yang Yong, Yang Yaodong, Lou Xiaojie, Pennycook Stephen J
College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
Angew Chem Int Ed Engl. 2019 Oct 14;58(42):15076-15081. doi: 10.1002/anie.201907695. Epub 2019 Sep 9.
Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H production rate of 655 μmol g h , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.
压电催化,即将机械振动转化为化学能,已成为水分解技术中一个有前途的候选方法。然而,产氢效率相当有限。我们在此报告了定义明确的10纳米钛酸钡纳米颗粒(NPs),其特征在于具有大的机电系数,可诱导出高压电效应。原子分辨率高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和扫描探针显微镜(SPM)表明,压电钛酸钡纳米颗粒呈现出具有低能量势垒和极化各向异性的多相共存,这导致了高机电系数。朗道自由能模型也证实,大大降低的极化各向异性促进了极化旋转。利用钛酸钡纳米颗粒的高压电特性,我们展示了一个整体水分解过程,其产氢效率是迄今报道的最高值,产氢速率为655 μmol g⁻¹ h⁻¹,可与优秀的光催化系统相媲美。这项研究突出了压电催化在整体水分解方面的潜力。