Suppr超能文献

来自超嗜热古菌 Thermococcus kodakarensis 的 tRNA 中的独特修饰核苷以及 tRNA mG10/mG10 甲基转移酶(古菌 Trm11)对高温生存的需求。

Distinct Modified Nucleosides in tRNA from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA mG10/mG10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures.

机构信息

Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan

出版信息

J Bacteriol. 2019 Oct 4;201(21). doi: 10.1128/JB.00448-19. Print 2019 Nov 1.

Abstract

tRNA mG10/mG10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms ,-dimethylguanosine (mG10) via -methylguanosine (mG10). We determined the complete sequence of tRNA, one of the substrate tRNAs for archaeal Trm11 from , a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNA identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'--methylcytidine at position 6, 2-thiocytidine at position 17, 2'--methyluridine at position 20, 5,2'--dimethylcytidine at position 32, and 2'--methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNA, although 1-methylguanosine is generally found at this location in tRNA from other archaea. We constructed (Δ) and some gene disruptant strains and compared their tRNA with that of the wild-type strain, which confirmed the absence of mG10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (mG) at position 67 in the double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an mG6 methyltransferase. The Δ strain grew poorly at 95°C, indicating that archaeal Trm11 is required for survival at high temperatures. The mG10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures. is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNA from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNA The construction of (Δ) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (mG) at position 67 in the double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an mG6 methyltransferase. The Δ strain grew poorly at 95°C, indicating that archaeal Trm11 is required for survival at high temperatures.

摘要

tRNA mG10/mG10 甲基转移酶(古菌 Trm11)使 tRNA 中第 10 位的鸟苷 2-氨基甲基化,并通过 -甲基鸟苷(mG10)形成 ,-二甲基鸟苷(mG10)。我们从一种超嗜热古菌 中确定了一种古菌 Trm11 的底物 tRNA 的完整序列。tRNA 经酶消化后进行液相色谱/质谱分析,在 21 个位置鉴定出 15 种修饰核苷。在 tRNA 的一些新位置发现了几种修饰,包括位置 6 的 2'-O-甲基胞苷、位置 17 的 2-硫代胞苷、位置 20 的 2'-O-甲基尿苷、位置 32 的 5,2'-二甲基胞苷和位置 42 的 2'-甲基鸟苷。此外,在这种 tRNA 中还发现了甲基假尿嘧啶位于 37 位,尽管在来自其他古菌的 tRNA 中,通常在这个位置发现 1-甲基鸟苷。我们构建了 (Δ)和一些基因缺失突变株,并将它们的 tRNA 与野生型菌株的 tRNA 进行比较,这分别证实了 mG10 和其他相应修饰的缺失。在 双缺失突变株中,位置 67 处没有 2-甲基鸟苷(mG)表明这种甲基化是由先前鉴定为 mG6 甲基转移酶的 Trm14 介导的。Δ 菌株在 95°C 下生长不良,表明古菌 Trm11 是该古菌在高温下生存所必需的。mG10 修饰可能对 tRNA 的稳定性和/或 tRNA 在高温下的正确折叠产生影响。总之,这些结果为古菌 tRNA 中修饰的功能和修饰酶的底物特异性提供了新的线索,使我们能够提出一种在高温下稳定该古菌 tRNA 的策略。是一种超嗜热古菌,可在 60 至 100°C 下生长。通过液相色谱/质谱法测定了该古菌的 tRNA 序列。在 21 个位置观察到 15 种修饰核苷,包括 5 种新位置的修饰;此外,在一种古菌 tRNA 中还新观察到位置 37 的甲基假尿嘧啶。构建 (Δ)和其他基因缺失突变株证实了该 tRNA 中修饰酶的存在。在 双缺失突变株中,位置 67 处没有 2-甲基鸟苷(mG)表明该位置被先前鉴定为 mG6 甲基转移酶的 Trm14 甲基化。Δ 菌株在 95°C 下生长不良,表明古菌 Trm11 是该古菌在高温下生存所必需的。

相似文献

2
Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14.
Nucleic Acids Res. 2011 Sep 1;39(17):7641-55. doi: 10.1093/nar/gkr475. Epub 2011 Jun 21.
3
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization.
J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00748-19.
9
Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis.
Amino Acids. 2020 Feb;52(2):287-299. doi: 10.1007/s00726-019-02793-4. Epub 2019 Oct 16.

引用本文的文献

2
The Evolutionary Landscape of tRNA Modifications in Archaea: Insights from High-Throughput Sequencing.
bioRxiv. 2025 May 5:2025.05.02.651894. doi: 10.1101/2025.05.02.651894.
5
Comprehensive nucleoside analysis of archaeal RNA modification profiles reveals an mG in the conserved P loop of 23S rRNA.
Cell Rep. 2025 Apr 22;44(4):115471. doi: 10.1016/j.celrep.2025.115471. Epub 2025 Mar 24.
6
A novel 4,4-dimethylcytidine in the archaeal ribosome enhances hyperthermophily.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2405999121. doi: 10.1073/pnas.2405999121. Epub 2024 Oct 29.
8
tRNA modification profiling reveals epitranscriptome regulatory networks in .
bioRxiv. 2024 Jul 2:2024.07.01.601603. doi: 10.1101/2024.07.01.601603.

本文引用的文献

1
Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium .
Front Genet. 2019 Mar 8;10:204. doi: 10.3389/fgene.2019.00204. eCollection 2019.
2
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00690-18. Print 2019 May 1.
5
Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs.
Nucleic Acids Res. 2019 Feb 28;47(4):2041-2055. doi: 10.1093/nar/gky1236.
6
Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA.
Microorganisms. 2018 Oct 20;6(4):110. doi: 10.3390/microorganisms6040110.
7
Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease.
Nucleic Acids Res. 2018 Feb 28;46(4):1565-1583. doi: 10.1093/nar/gky068.
9
Structural insight into the methyltransfer mechanism of the bifunctional Trm5.
Sci Adv. 2017 Dec 1;3(12):e1700195. doi: 10.1126/sciadv.1700195. eCollection 2017 Dec.
10
MODOMICS: a database of RNA modification pathways. 2017 update.
Nucleic Acids Res. 2018 Jan 4;46(D1):D303-D307. doi: 10.1093/nar/gkx1030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验