Suppr超能文献

加快渗滤器。

Speeding Up Percolator.

机构信息

Department of Public Health Sciences , University of California, Davis , Davis , California 95616 , United States.

Department of Computer Science , ETH Zurich , Zurich 8092 , Switzerland.

出版信息

J Proteome Res. 2019 Sep 6;18(9):3353-3359. doi: 10.1021/acs.jproteome.9b00288. Epub 2019 Aug 23.

Abstract

The processing of peptide tandem mass spectrometry data involves matching observed spectra against a sequence database. The ranking and calibration of these peptide-spectrum matches can be improved substantially using a machine learning postprocessor. Here, we describe our efforts to speed up one widely used postprocessor, Percolator. The improved software is dramatically faster than the previous version of Percolator, even when using relatively few processors. We tested the new version of Percolator on a data set containing over 215 million spectra and recorded an overall reduction to 23% of the running time as compared to the unoptimized code. We also show that the memory footprint required by these speedups is modest relative to that of the original version of Percolator.

摘要

肽串联质谱数据分析涉及将观测到的光谱与序列数据库进行匹配。使用机器学习后处理器可以大大提高这些肽-谱匹配的排名和校准。在这里,我们描述了我们加快广泛使用的后处理器 Percolator 的努力。改进后的软件比以前版本的 Percolator 快得多,即使使用相对较少的处理器也是如此。我们在一个包含超过 2.15 亿个光谱的数据集上测试了新版本的 Percolator,并记录与未优化的代码相比,运行时间总体减少了 23%。我们还表明,与原始版本的 Percolator 相比,这些加速所需的内存占用量是适度的。

相似文献

1
Speeding Up Percolator.
J Proteome Res. 2019 Sep 6;18(9):3353-3359. doi: 10.1021/acs.jproteome.9b00288. Epub 2019 Aug 23.
2
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
J Proteome Res. 2018 May 4;17(5):1978-1982. doi: 10.1021/acs.jproteome.7b00767. Epub 2018 Apr 6.
3
Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator.
Mol Cell Proteomics. 2012 Aug;11(8):478-91. doi: 10.1074/mcp.O111.014522. Epub 2012 Apr 6.
4
Sensitive and Specific Spectral Library Searching with CompOmics Spectral Library Searching Tool and Percolator.
J Proteome Res. 2022 May 6;21(5):1365-1370. doi: 10.1021/acs.jproteome.2c00075. Epub 2022 Apr 21.
5
Machine Learning Strategy That Leverages Large Data sets to Boost Statistical Power in Small-Scale Experiments.
J Proteome Res. 2020 Mar 6;19(3):1267-1274. doi: 10.1021/acs.jproteome.9b00780. Epub 2020 Feb 17.
6
Improving X!Tandem on peptide identification from mass spectrometry by self-boosted Percolator.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Sep-Oct;9(5):1273-80. doi: 10.1109/TCBB.2012.86.
7
Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.
J Am Soc Mass Spectrom. 2016 Nov;27(11):1719-1727. doi: 10.1007/s13361-016-1460-7. Epub 2016 Aug 29.
8
Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.
J Proteome Res. 2016 Aug 5;15(8):2749-59. doi: 10.1021/acs.jproteome.6b00290. Epub 2016 Jul 22.
9
Semi-supervised learning for peptide identification from shotgun proteomics datasets.
Nat Methods. 2007 Nov;4(11):923-5. doi: 10.1038/nmeth1113. Epub 2007 Oct 21.
10
Combining percolator with X!Tandem for accurate and sensitive peptide identification.
J Proteome Res. 2013 Jun 7;12(6):3026-33. doi: 10.1021/pr4001256. Epub 2013 May 1.

引用本文的文献

1
Sex-specific responses to slow progressive pressure overload in a large animal model of HFpEF.
Am J Physiol Heart Circ Physiol. 2022 Oct 1;323(4):H797-H817. doi: 10.1152/ajpheart.00374.2022. Epub 2022 Sep 2.
2
TIDD: tool-independent and data-dependent machine learning for peptide identification.
BMC Bioinformatics. 2022 Mar 30;23(1):109. doi: 10.1186/s12859-022-04640-y.
3
Binary Classifier for Computing Posterior Error Probabilities in MetaMorpheus.
J Proteome Res. 2021 Apr 2;20(4):1997-2004. doi: 10.1021/acs.jproteome.0c00838. Epub 2021 Mar 8.

本文引用的文献

1
Focus on the spectra that matter by clustering of quantification data in shotgun proteomics.
Nat Commun. 2020 Jun 26;11(1):3234. doi: 10.1038/s41467-020-17037-3.
4
Data-Driven Rescoring of Metabolite Annotations Significantly Improves Sensitivity.
Anal Chem. 2018 Oct 2;90(19):11636-11642. doi: 10.1021/acs.analchem.8b03224. Epub 2018 Sep 21.
5
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
J Proteome Res. 2018 May 4;17(5):1978-1982. doi: 10.1021/acs.jproteome.7b00767. Epub 2018 Apr 6.
6
Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.
J Am Soc Mass Spectrom. 2016 Nov;27(11):1719-1727. doi: 10.1007/s13361-016-1460-7. Epub 2016 Aug 29.
7
Dynamic and Combinatorial Landscape of Histone Modifications during the Intraerythrocytic Developmental Cycle of the Malaria Parasite.
J Proteome Res. 2016 Aug 5;15(8):2787-801. doi: 10.1021/acs.jproteome.6b00366. Epub 2016 Jun 24.
8
Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
J Proteome Res. 2015 Nov 6;14(11):4662-73. doi: 10.1021/acs.jproteome.5b00536. Epub 2015 Sep 30.
9
IPeak: An open source tool to combine results from multiple MS/MS search engines.
Proteomics. 2015 Sep;15(17):2916-20. doi: 10.1002/pmic.201400208. Epub 2015 Aug 6.
10
A decoy-free approach to the identification of peptides.
J Proteome Res. 2015 Apr 3;14(4):1792-8. doi: 10.1021/pr501164r. Epub 2015 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验