Department of Public Health Sciences , University of California, Davis , Davis , California 95616 , United States.
Division of Biostatistics , University of California, Davis , Davis , California 95616 , United States.
J Proteome Res. 2018 May 4;17(5):1978-1982. doi: 10.1021/acs.jproteome.7b00767. Epub 2018 Apr 6.
Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l-SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l-SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l-SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .
percolator 是一种重要的工具,可以大大提高数据库搜索的结果和后续的下游分析。使用支持向量机 (SVMs), percolator 根据目标和诱饵之间的学习决策边界重新校准肽谱匹配。为了提高大规模数据集的分析时间,我们通过软件和算法优化来更新 percolator 的 SVM 学习引擎,而不是需要仔细研究其对不同搜索设置和数据集的学习参数的影响的启发式方法。我们表明,通过优化 percolator 的原始学习算法 l-SVM-MFN,大规模 SVM 学习几乎只需要原始运行时间的三分之一。此外,我们表明,通过使用广泛使用的信任区域牛顿 (TRON) 算法而不是 l-SVM-MFN,大规模 percolator SVM 学习减少到几乎只有原始运行时间的五分之一。重要的是,这些加速仅影响 percolator 收敛到全局解的速度,而不会改变重新校准性能。对 l-SVM-MFN 和 TRON 的升级版本都在 percolator 代码库中进行了多线程和单线程优化,并在 bitbucket.org/jthalloran/percolator_upgrade 下以 Apache 许可证提供。