Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland.
Department of Nature Conservation, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
Sci Total Environ. 2019 Oct 15;687:1285-1294. doi: 10.1016/j.scitotenv.2019.06.022. Epub 2019 Jun 11.
Of fundamental importance for the functioning of a community is the flow of energy and elements through its components. However, the question of how (if at all) the edge effect of habitats can drive elemental traits of organisms has hitherto been largely neglected issue in ecosystem ecology at the community level. We quantified the abundance of invertebrates and measured the elemental composition (K, Na, Ca, Mg, Cu, Zn, Fe, Mn, As, Cd, Co and Pb) of 15 different organisms within the plant-invertebrate food web (plant - oilseed rape pests/herbivores - pollinators = wild bees - saprovores - predators - parasitoids) sampled in 34 fields of a key bioenergy crop that is an exceptionally strong biodiversity driver, the oilseed rape. Then these were related to the individual field edge habitat features (including typically anthropogenic ones like dirt and tarred roads) measured within a 100 m radius around the invertebrate sampling sites. Our study showed that elemental traits of the plant-invertebrate food web components in oilseed rape crops varied owing to the habitat specificity determined at the relatively small spatial scale of an individual field, and that the elemental traits of these organisms differed from both an inter- and an intra-guild perspective. The major mechanistic explanation for most of these relationships seems to derive from the secondary gut content effect. Determining one single state for the homeostatic/stoichiometric regulation of chemical elements in invertebrates based on the application of whole-body metal concentrations is in principle impossible, because of the unknown noise caused by the inclusion of extracellular portions of metals in the analysis. It is thus imperative to develop consistent principles for assessing elemental traits of organisms that are based on highly sensitive and high-throughput analytical methods for the ionomic profiling of microsamples at the organ, tissue, cellular or even sub-cellular levels.
对于一个群落的功能来说,基本重要的是能量和元素在其组成部分中的流动。然而,迄今为止,在群落水平的生态系统生态学中,栖息地边缘效应如何(如果有的话)驱动生物体的元素特征这一问题在很大程度上被忽视了。我们量化了无脊椎动物的丰度,并测量了 15 种不同生物体的元素组成(K、Na、Ca、Mg、Cu、Zn、Fe、Mn、As、Cd、Co 和 Pb),这些生物体位于植物-无脊椎动物食物网中(植物-油菜害虫/食草动物-传粉者=野生蜜蜂-腐生动物-捕食者-寄生蜂),在生物能源作物油菜的 34 个样地中进行采样。然后,我们将这些元素组成与每个样地边缘生境特征(包括通常是人为的特征,如泥土和柏油马路)相关联,这些特征是在无脊椎动物采样点周围 100 米半径内测量的。我们的研究表明,油菜作物中植物-无脊椎动物食物网成分的元素特征因在相对较小的单个样地空间尺度上确定的生境特异性而有所不同,而且这些生物体的元素特征与种间和种内的观点都不同。这些关系的主要机制解释似乎主要来自于次生肠道内容物效应。基于全身金属浓度来确定无脊椎动物体内化学元素的体内平衡/化学计量调节的单一状态在原则上是不可能的,因为分析中包括了金属的细胞外部分,这会导致未知的噪声。因此,当务之急是制定评估生物体元素特征的一致原则,这些原则是基于高度敏感和高通量的分析方法,用于在器官、组织、细胞甚至亚细胞水平上对微样本进行离子组分析。