Thekkekara Litty V, Gu Min
Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, 3001, Australia.
Centre for Artificial Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shangai for Science and Technology, Shanghai, 200093, China.
Sci Rep. 2019 Aug 14;9(1):11822. doi: 10.1038/s41598-019-48320-z.
Textile integrable large-scale on-chip energy storages and solar energy storages take a significant role in the realization of next-generation primary wearable devices for sensing, wireless communication, and health tracking. In general, these energy storages require major features like mechanical robustness, environmental friendliness, high-temperature tolerance, inexplosive nature, and long-term storage duration. Here we report on large-scale laser-printed graphene supercapacitors of dimension 100 cm fabricated in 3 minutes on textiles with excellent water stability, an areal capacitance, 49 mF cm, energy density, 6.73 mWh/cm, power density, 2.5 mW/cm, and stretchability up to 200%. Further, a demonstration is given for the textile integrated solar energy storage with stable performance for up to 20 days to reach half of the maximum output potential. These cost-effective self-reliant on-chip charging units can become an integral part for the future electronic and optoelectronic textiles.
可集成于纺织品的大规模片上储能和太阳能储能在实现用于传感、无线通信和健康追踪的下一代初级可穿戴设备方面发挥着重要作用。一般来说,这些储能装置需要具备机械坚固性、环境友好性、耐高温性、不爆炸特性以及长期存储时长等主要特性。在此,我们报告了在纺织品上3分钟内制备出的尺寸为100厘米的大规模激光打印石墨烯超级电容器,其具有优异的水稳定性,面积电容为49 mF/cm²,能量密度为6.73 mWh/cm²,功率密度为2.5 mW/cm²,拉伸性高达200%。此外,还展示了集成于纺织品的太阳能储能,其性能稳定可达20天,达到最大输出电位的一半。这些具有成本效益的自供电片上充电单元可成为未来电子和光电纺织品的一个组成部分。