College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, People's Republic of China.
Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Road South, Chengdu, 610041, People's Republic of China.
Appl Microbiol Biotechnol. 2019 Oct;103(20):8631-8645. doi: 10.1007/s00253-019-10078-9. Epub 2019 Aug 15.
Syntrophic oxidization of acetate and propionate are both critical steps of methanogenesis during thermophilic anaerobic digestion. However, knowledge on syntrophic acetate-oxidizing bacteria (SAOB) and syntrophic propionate-oxidizing bacteria (SPOB) is limited because of the difficulty in pure culture isolation due to symbiotic relationship. In this study, two thermophilic acetate-fed anaerobic chemostats, ATL (dilution rate of 0.025 day) and ATH (0.05 day) and one thermophilic propionate-fed anaerobic chemostat PTL (0.025 day) were constructed, AOB and POB in these chemostats were studied via microbial community analysis and DNA stable-isotope probing (SIP). The results showed that, in addition to Tepidanaerobacter, a known SAOB, species of Thauera, Thermodesulfovibrio, Anaerobaculum, Ruminiclostridium, Comamonas, and uncultured bacteria belonging to Lentimicrobiaceae, o_MBA03, Thermoanaerobacteraceae, Anaerolineaceae, Clostridiales, and Ruminococcaceae were determined to be potential AOB in chemostats. Pelotomaculum was the key SPOB detected in the propionate-fed chemostat. Based on the intense fluorescence of coenzyme F, majority of Methanosarcina cells in acetate-fed chemostats were involved in hydrogenotrophic methanogenesis, suggesting the existence of highly active SAOB among the detected AOB. In the propionate-fed chemostat, most of the species detected as AOB were similar to those detected in the acetate-fed chemostats, suggesting the contribution of the syntrophic acetate oxidization pathway for methane generation. These results revealed the existence of previously unknown AOB with high diversity in thermophilic chemostats and suggested that methanogenesis from acetate via the syntrophic oxidization pathway is relevant for thermophilic anaerobic digestion.
乙酸和丙酸的协同氧化都是嗜热厌氧消化过程中产甲烷作用的关键步骤。然而,由于共生关系,纯培养分离困难,因此对协同乙酸氧化菌(SAOB)和协同丙酸氧化菌(SPOB)的了解有限。本研究构建了两个嗜热乙酸进料厌氧恒化器 ATL(稀释率为 0.025 天)和 ATH(0.05 天)和一个嗜热丙酸进料厌氧恒化器 PTL(0.025 天),通过微生物群落分析和 DNA 稳定同位素探针(SIP)研究了这些恒化器中的 AOB 和 POB。结果表明,除了已知的 SAOB Tepidanaerobacter 外,Thauera、Thermodesulfovibrio、Anaerobaculum、Ruminiclostridium、Comamonas 和未培养的 Lentimicrobiaceae、o_MBA03、Thermoanaerobacteraceae、Anaerolineaceae、Clostridiales 和 Ruminococcaceae 属的细菌也被鉴定为恒化器中的潜在 AOB。Pelotomaculum 是丙酸进料恒化器中检测到的关键 SPOB。基于辅酶 F 的强烈荧光,乙酸进料恒化器中的大多数 Methanosarcina 细胞参与了氢营养型产甲烷作用,这表明检测到的 AOB 中存在高度活跃的 SAOB。在丙酸进料恒化器中,检测到的大多数 AOB 与乙酸进料恒化器中的相似,这表明协同乙酸氧化途径对甲烷生成的贡献。这些结果揭示了在嗜热恒化器中存在以前未知的具有高度多样性的 AOB,并表明通过协同氧化途径从乙酸生成甲烷与嗜热厌氧消化有关。