Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, Sichuan, China.
College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0109023. doi: 10.1128/aem.01090-23. Epub 2024 Jan 23.
Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera , , and , we identified a number of potential SAOB that are affiliated with , Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as . The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.
醋酸盐是有机废物厌氧消化生产 CH 的主要中间产物。在产甲烷系统中,醋酸盐的降解是通过乙酰氧合作用产甲烷或通过醋酸盐氧化菌和氢营养型产甲烷菌的协同降解来完成的。由于难以分离协同降解醋酸盐的细菌(SAOB),因此 SAOB 的多样性和代谢及其与产甲烷菌相互作用的机制尚未完全阐明。在这项研究中,通过宏基因组学和宏转录组学阐明了潜在的 SAOB 的活性和代谢特征及其与产甲烷菌的相互作用。除了报道的分类在属 、 、和 中的 SAOB 外,我们还鉴定了一些与 、Thermoanaerobacteraceae、Anaerolineae 和 Gemmatimonadetes 相关的潜在 SAOB。具有甘氨酸介导的醋酸盐氧化途径的潜在 SAOB 占据了 SAOB 群落的主导地位。此外,似乎是通过最活跃的潜在 SAOB 降解醋酸盐的主要产物。我们在乙酸喂养的恒化器中鉴定了这些潜在 SAOB 的产甲烷菌伙伴为 。每个恒化器中占主导地位的潜在 SAOB 具有相似的代谢特征,尽管它们处于不同的脂肪酸喂养的恒化器中。这些新的共生谱系普遍存在,可能在嗜热产甲烷反应器中发挥关键作用。这项研究扩展了我们对未培养的协同降解醋酸盐的系统发育多样性和生物学功能的理解,并提供了有关它们与产甲烷菌相互作用的新见解。
重要性:将反应器操作与组学相结合,深入了解了新型未培养的协同降解醋酸盐的细菌以及它们在嗜热厌氧消化器中的表现。这提高了我们对协同降解醋酸盐的理解,并为更好地控制和优化厌氧消化过程提供了必要的背景知识。
Appl Environ Microbiol. 2024-2-21
Appl Microbiol Biotechnol. 2019-8-15
FEMS Microbiol Ecol. 2015-11
Appl Environ Microbiol. 2016-12-30
Nat Biotechnol. 2020-4-27
Appl Microbiol Biotechnol. 2019-8-15
Archaea. 2018-7-17
Appl Microbiol Biotechnol. 2017-2