Department of Psychology, North Carolina State University, Raleigh.
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill.
J Gerontol B Psychol Sci Soc Sci. 2020 Jan 1;75(1):67-79. doi: 10.1093/geronb/gbz100.
We apply new statistical models to daily diary data to advance both methodological and conceptual goals. We examine age effects in within-person slopes in daily diary data and introduce Generalized Fiducial Inference (GFI), which provides a compromise between frequentist and Bayesian inference. We use daily stressor exposure data across six domains to generate within-person emotional reactivity slopes with daily negative affect. We test for systematic age differences and similarities in these reactivity slopes, which are inconsistent in previous research.
One hundred and eleven older (aged 60-90) and 108 younger (aged 18-36) adults responded to daily stressor and negative affect questions each day for eight consecutive days, resulting in 1,438 total days. Daily stressor domains included arguments, avoided arguments, work/volunteer stressors, home stressors, network stressors, and health-related stressors.
Using Bayesian, GFI, and frequentist paradigms, we compared results for the six stressor domains with a focus on interpreting age effects in within-person reactivity. Multilevel models suggested null age effects in emotional reactivity across each of the paradigms within the domains of avoided arguments, work/volunteer stressors, home stressors, and health-related stressors. However, the models diverged with respect to null age effects in emotional reactivity to arguments and network stressors.
The three paradigms converged on null age effects in reactivity for four of the six stressor domains. GFI is a useful tool that provides additional information when making determinations regarding null age effects in within-person slopes. We provide the code for readers to apply these models to their own data.
我们应用新的统计模型来分析日常日记数据,以推进方法学和概念性目标。我们检验了个体内斜率的年龄效应,并引入了广义可信区间推断(GFI),该方法在频率派和贝叶斯推断之间提供了一种折衷。我们使用六个领域的日常压力源暴露数据生成个体内情绪反应斜率,以每日负性情绪为因变量。我们检验了这些反应斜率中是否存在系统的年龄差异和相似性,这与之前的研究结果不一致。
111 名老年人(年龄 60-90 岁)和 108 名年轻人(年龄 18-36 岁)连续 8 天每天回答日常压力源和负性情绪问题,共 1438 天。日常压力源领域包括争吵、避免争吵、工作/志愿者压力源、家庭压力源、社交网络压力源和与健康相关的压力源。
我们使用贝叶斯、GFI 和频率派范式,比较了六个压力源领域的结果,重点解释个体内反应性的年龄效应。多层次模型表明,在避免争吵、工作/志愿者压力源、家庭压力源和与健康相关的压力源领域,个体内情绪反应的年龄效应在所有三个范式中均为零。然而,在对争吵和社交网络压力源的情绪反应中,模型的年龄效应为零。
这三个范式在六个压力源领域中的四个领域的反应性年龄效应上趋于一致。GFI 是一种有用的工具,当确定个体内斜率的零年龄效应时,它提供了额外的信息。我们为读者提供了应用这些模型到自己数据的代码。