Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, New York.
Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland.
Biophys J. 2019 Sep 3;117(5):903-919. doi: 10.1016/j.bpj.2019.07.043. Epub 2019 Aug 2.
The chemokine receptor CCR5 is a drug target to prevent transmission of HIV/AIDS. We studied four analogs of the native chemokine regulated, on activation, normal T-cell-expressed, and secreted (RANTES) (CCL5) that have anti-HIV potencies of around 25 pM, which is more than four orders of magnitude higher than that of RANTES itself. It has been hypothesized that the ultrahigh potency of the analogs is due to their ability to bind populations of receptors not accessible to native chemokines. To test this hypothesis, we developed a homogeneous dual-color fluorescence cross-correlation spectroscopy assay for saturation- and competition-binding experiments. The fluorescence cross-correlation spectroscopy assay has the advantage that it does not rely on competition with radioactively labeled native chemokines used in conventional assays. We prepared site-specifically labeled fluorescent analogs using native chemical ligation of synthetic peptides, followed by bioorthogonal fluorescent labeling. We engineered a mammalian cell expression construct to provide fluorescently labeled CCR5, which was purified using a tandem immunoaffinity and size-exclusion chromatography approach to obtain monomeric fluorescent CCR5 in detergent solution. We found subnanomolar binding affinities for the two analogs 5P12-RANTES and 5P14-RANTES and about 20-fold reduced affinities for PSC-RANTES and 6P4-RANTES. Using homologous and heterologous competition experiments with unlabeled chemokine analogs, we conclude that the analogs all bind at the same binding site, whereas the native chemokines (RANTES and MIP-1α) fail to displace bound fluorescent analogs even at tens of micromolar concentrations. Our results can be rationalized with de novo structural models of the N-terminal tails of the synthetic chemokines that adopt a different binding mode as compared to the parent compound.
趋化因子受体 CCR5 是预防 HIV/AIDS 传播的药物靶点。我们研究了四种天然趋化因子调节的、激活后正常 T 细胞表达和分泌的趋化因子(RANTES)(CCL5)的类似物,它们具有约 25 pM 的抗 HIV 效力,比 RANTES 本身高四个数量级以上。有人假设,类似物的超高效力是由于它们能够结合天然趋化因子无法接触到的受体群体。为了验证这一假设,我们开发了一种均相双色荧光相关光谱测定法,用于饱和和竞争结合实验。荧光相关光谱测定法的优点是它不依赖于与传统测定法中使用的放射性标记天然趋化因子的竞争。我们使用合成肽的天然化学连接制备了定点标记的荧光类似物,然后进行生物正交荧光标记。我们设计了一种哺乳动物细胞表达构建体,提供荧光标记的 CCR5,然后使用串联免疫亲和和尺寸排阻层析方法进行纯化,以在去污剂溶液中获得单体荧光 CCR5。我们发现两种类似物 5P12-RANTES 和 5P14-RANTES 的亚纳摩尔结合亲和力,而 PSC-RANTES 和 6P4-RANTES 的亲和力约降低 20 倍。使用未标记的趋化因子类似物进行同源和异源竞争实验,我们得出结论,所有类似物都结合在相同的结合位点,而天然趋化因子(RANTES 和 MIP-1α)即使在几十微摩尔浓度下也不能取代结合的荧光类似物。我们的结果可以用新的合成趋化因子 N 端尾部的从头结构模型来合理化,与母体化合物相比,这些模型采用了不同的结合模式。