Zheng Yi, Han Gye Won, Abagyan Ruben, Wu Beili, Stevens Raymond C, Cherezov Vadim, Kufareva Irina, Handel Tracy M
University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA.
Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
Immunity. 2017 Jun 20;46(6):1005-1017.e5. doi: 10.1016/j.immuni.2017.05.002.
CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.
CCR5是HIV用于感染白细胞的主要趋化因子受体,而CCR5配体通过阻断CCR5与HIV gp120的结合来抑制感染。为指导改进疗法的设计,我们解析了CCR5与趋化因子拮抗剂[5P7]CCL5形成的复合物的结构。几个结构特征似乎有助于[5P7]CCL5的抗HIV效力,包括趋化因子相对于受体的独特取向、受体结合口袋的近乎完全占据、分子间氢键的密集网络,以及结合决定簇与FDA批准的HIV抑制剂马拉维若的相似性。分子模拟表明HIV gp120模拟了趋化因子与CCR5的相互作用,这为CCR5识别多种配体和gp120变体的能力提供了解释。我们的研究结果表明,结构可塑性促进了受体-趋化因子特异性并使HIV能够利用,同时为设计用于治疗HIV和其他CCR5介导疾病的小分子和蛋白质抑制剂提供了见解。