Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico.
Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico.
Life Sci Space Res (Amst). 2019 Aug;22:125-136. doi: 10.1016/j.lssr.2019.02.007. Epub 2019 Feb 26.
Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO, 2% N and 2% Ar; and (2) 66% CO, 33% N and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO = 1.6-6.0%), and sodium perchlorate (NaClO ∼ 0.2-0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNONaClO (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NOClO (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl, NaCl, CaCl, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.
硝酸盐和高氯酸盐在地球和火星上都存在。在火星环境中,高氯酸盐占主导地位,而在地球上则相反。这意味着导致它们形成的机制在这两个行星上是不同的。形成它们所需的化学元素是氮和氯,分别存在于大气和表面。火星大气中的尘埃会引起大气波动,导致尘暴和沙暴的形成。尘暴同时包含这两种化学元素,通常会产生很高的电场,从而引发放电的形成。在这里,我们使用激光烧蚀氯化钠(NaCl)板在两种不同的模拟大气中进行了该现象的实验室实验:(1)96%CO、2%N 和 2%Ar;和(2)66%CO、33%N 和 1%Ar。在反应器壁上凝结和积累的尘埃通过不同的分析技术进行了分析,包括傅里叶变换红外光谱、使用偶氮染料的可见光谱、热重/同步热分析与质谱联用、粉末 X 射线衍射和离子色谱。烧蚀尘埃的主要成分对应于 NaCl≥91.5%、硝酸钠(NaNO=1.6-6.0%)和高氯酸钠(NaClO∼0.2-0.3%)。有趣的是,这些盐是在与今天的火星相关的干燥过程中形成的。使用热化学模型来理解导致这些盐在气相中形成的化学步骤。该过程中 NaNONaClO(wt/wt)的比值估计在 5.0 到 30.0 之间变化;与在火星上发现的比值(NOClO(wt/wt))相比,这个比值太高了,范围从 0.004 到 0.13。这意味着气态 NaCl 没有被放电过程有效地氧化为高氯酸盐。相反,我们提出气态金属氯化物(例如 MgCl、NaCl、CaCl、KCl)是由尘暴中存在的氯化物矿物在放电作用下挥发到大气中,并随后通过光化学过程被氧化为高氯酸盐。需要进一步的工作来评估这种可能来源的相对贡献。