Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany; Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany.
Advanced Therapies Innovation Department, Siemens Healthcare K.K., Tokyo, Japan.
JACC Cardiovasc Imaging. 2020 Mar;13(3):760-770. doi: 10.1016/j.jcmg.2019.06.027. Epub 2019 Aug 14.
This study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR).
CT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated.
A total of 482 vessels from 314 patients (age 62.3 ± 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and ≥400) on a per-vessel level with invasive FFR as the reference standard.
The diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC ≥400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC ≥ 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001).
Machine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621).
本研究旨在探讨冠状动脉钙化(CAC)评分对基于机器学习的冠状动脉计算机断层扫描(CT)血管造影(cCTA)衍生的血流储备分数(CT-FFR)诊断性能的影响。
CT-FFR 可可靠地用于检测特定病变的缺血情况。使用机器学习人工智能技术的新型 CT-FFR 算法可实现快速检测,并且需要更简单的计算流体动力学。然而,CAC 评分对机器学习方法的诊断性能的影响尚未得到研究。
本研究纳入了 314 名患者(年龄 62.3±9.3 岁,77%为男性)的 482 支血管,这些患者接受了 cCTA 检查,随后进行了有创 FFR 检查。这些患者均来自 MACHINE(基于机器学习的 CT 血管造影衍生 FFR:多中心注册研究)注册研究的数据。使用 Agatston 公约对 CAC 评分进行量化。以有创 FFR 为参考标准,在每个血管水平上评估 CT-FFR 检测特定病变缺血的诊断性能,同时评估所有 Agatston 评分类别(CAC 0、>0 至<100、100 至<400 和≥400)。
与单独的 cCTA 相比,在每个血管水平(78%比 60%)和每个患者水平(83%比 73%),CT-FFR 对有创 FFR 的诊断准确性均优于单独的 cCTA。在所有 Agatston 评分类别中,CT-FFR 的诊断准确性、敏感性和特异性均无统计学差异。在高 Agatston 评分(CAC≥400)的血管中,CT-FFR 具有良好的鉴别能力,在低至中度 Agatston 评分(CAC>0 至<400)中表现出良好的性能,并且在受试者工作特征曲线下面积(AUC)方面具有统计学显著差异(AUC:0.71 [95%置信区间(CI):0.57 至 0.85] 比 0.85 [95%CI:0.82 至 0.89],p=0.04)。在高 Agatston 评分(CAC≥400:AUC 0.71 比 0.55,p=0.04)和低至中度 Agatston 评分(CAC>0 至<400:AUC 0.86 比 0.63,p<0.001)中,CT-FFR 的诊断价值优于 cCTA。
基于机器学习的 CT-FFR 显示出优于单独 cCTA 的诊断性能,随着 CAC 负荷/Agatston 钙评分的增加,CT-FFR 的性能差异具有统计学意义。(基于机器学习的 CT 血管造影衍生 FFR:多中心注册研究 [MACHINE] NCT02805621)。