Department of Computer Engineering, École Polytechnique de Montréal, Montréal, Canada.
Division of Pediatric Cardiology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
J Biophotonics. 2020 Jan;13(1):e201900112. doi: 10.1002/jbio.201900112. Epub 2019 Sep 2.
Intravascular optical coherence tomography (IV-OCT) is a light-based imaging modality with high resolution, which employs near-infrared light to provide tomographic intracoronary images. Morbidity caused by coronary heart disease is a substantial cause of acute coronary syndrome and sudden cardiac death. The most common intracoronay complications caused by coronary artery disease are intimal hyperplasia, calcification, fibrosis, neovascularization and macrophage accumulation, which require efficient prevention strategies. OCT can provide discriminative information of the intracoronary tissues, which can be used to train a robust fully automatic tissue characterization model based on deep learning. In this study, we aimed to design a diagnostic model of coronary artery lesions. Particularly, we trained a random forest using convolutional neural network features to distinguish between normal and diseased arterial wall structure. Then, based on the arterial wall structure, fully convolutional network is designed to extract the tissue layers in normal cases, and pathological tissues regardless of lesion type in pathological cases. Then, the type of the lesions can be characterized with high precision using our previous model. The results demonstrate the robustness of the model with the approximate overall accuracy up to 90%.
血管内光学相干断层成像(IV-OCT)是一种基于光的成像方式,具有高分辨率,采用近红外光提供冠状动脉内断层图像。冠心病引起的发病率是急性冠状动脉综合征和心源性猝死的一个重要原因。最常见的由冠状动脉疾病引起的冠状动脉内并发症是内膜增生、钙化、纤维化、新生血管形成和巨噬细胞聚集,这需要有效的预防策略。OCT 可以提供冠状动脉内组织的鉴别信息,可用于基于深度学习训练强大的全自动组织特征模型。在本研究中,我们旨在设计一种冠状动脉病变的诊断模型。特别地,我们使用卷积神经网络特征训练了一个随机森林,以区分正常和患病的动脉壁结构。然后,基于动脉壁结构,设计全卷积网络以提取正常情况下的组织层,以及病理情况下无论病变类型的病理组织。然后,使用我们之前的模型可以高精度地对病变类型进行特征描述。结果表明,该模型具有约 90%的整体准确率,具有很强的稳健性。