Abdolmanafi Atefeh, Duong Luc, Dahdah Nagib, Cheriet Farida
Dept. of Software and IT Engineering, École de Technologie Supérieure, Montréal, Canada.
Div. of Pediatric Cardiology and Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
Biomed Opt Express. 2017 Jan 30;8(2):1203-1220. doi: 10.1364/BOE.8.001203. eCollection 2017 Feb 1.
Kawasaki disease (KD) is an acute childhood disease complicated by coronary artery aneurysms, intima thickening, thrombi, stenosis, lamellar calcifications, and disappearance of the media border. Automatic classification of the coronary artery layers (intima, media, and scar features) is important for analyzing optical coherence tomography (OCT) images recorded in pediatric patients. OCT has been known as an intracoronary imaging modality using near-infrared light which has recently been used to image the inner coronary artery tissues of pediatric patients, providing high spatial resolution (ranging from 10 to 20 m). This study aims to develop a robust and fully automated tissue classification method by using the convolutional neural networks (CNNs) as feature extractor and comparing the predictions of three state-of-the-art classifiers, CNN, random forest (RF), and support vector machine (SVM). The results show the robustness of CNN as the feature extractor and random forest as the classifier with classification rate up to 96%, especially to characterize the second layer of coronary arteries (media), which is a very thin layer and it is challenging to be recognized and specified from other tissues.
川崎病(KD)是一种儿童急性疾病,可并发冠状动脉瘤、内膜增厚、血栓、狭窄、层状钙化以及中膜边界消失。冠状动脉各层(内膜、中膜和瘢痕特征)的自动分类对于分析儿科患者记录的光学相干断层扫描(OCT)图像很重要。OCT是一种使用近红外光的冠状动脉内成像方式,最近已用于对儿科患者的冠状动脉内部组织进行成像,提供高空间分辨率(范围为10至20微米)。本研究旨在通过使用卷积神经网络(CNN)作为特征提取器,并比较三种最先进分类器(CNN、随机森林(RF)和支持向量机(SVM))的预测结果,开发一种强大的全自动组织分类方法。结果表明,CNN作为特征提取器和随机森林作为分类器具有鲁棒性,分类率高达96%,尤其在表征冠状动脉第二层(中膜)方面,该层非常薄,难以从其他组织中识别和区分。