Suppr超能文献

基于密集空洞空间金字塔池化的编解码器在前列腺磁共振图像分割中的应用。

Encoder-decoder with dense dilated spatial pyramid pooling for prostate MR images segmentation.

机构信息

Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems , Tianjin , China.

School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin , China.

出版信息

Comput Assist Surg (Abingdon). 2019 Oct;24(sup2):13-19. doi: 10.1080/24699322.2019.1649069. Epub 2019 Aug 19.

Abstract

Automatic segmentation of prostate magnetic resonance (MR) images has great significance for the diagnosis and clinical application of prostate diseases. It faces enormous challenges because of the low contrast of the tissue boundary and the small effective area of the prostate MR images. In order to solve these problems, we propose a novel end-to-end professional network which consists of an Encoder-Decoder structure with dense dilated spatial pyramid pooling (DDSPP) for prostate segmentation based on deep learning. First, the DDSPP module is used to extract the multi-scale convolution features in the prostate MR images, and then the decoder is used to capture the clear boundary of prostate. Competitive results are produced over state of the art on 130 MR images which key metrics Dice similarity coefficient (DSC) and Hausdorff distance (HD) are 0.954 and 1.752 mm respectively. Experimental results show that our method has high accuracy and robustness.

摘要

基于深度学习的前列腺磁共振图像自动分割具有重要的临床应用价值,可为前列腺疾病的诊断提供依据。但由于前列腺组织边界对比度低、磁共振图像有效区域小,前列腺磁共振图像自动分割仍面临巨大挑战。为解决这些问题,我们提出了一种新的端到端专业网络,该网络基于深度学习,由一个具有密集扩张空间金字塔池化(DDSPP)的编解码器结构组成,用于前列腺分割。首先,DDSPP 模块用于提取前列腺磁共振图像中的多尺度卷积特征,然后解码器用于捕获前列腺的清晰边界。在 130 张磁共振图像上进行了对比实验,产生了具有竞争力的结果,关键指标 Dice 相似系数(DSC)和 Hausdorff 距离(HD)分别为 0.954 和 1.752mm。实验结果表明,该方法具有较高的准确性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验