School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, 650091, China.
Yunnan Vocational Institute of Energy Technology, Qujing, Yunnan, 655001, China.
Med Phys. 2020 Dec;47(12):6270-6285. doi: 10.1002/mp.14512. Epub 2020 Oct 18.
PURPOSE: Ultrasound image segmentation is a challenging task due to a low signal-to-noise ratio and poor image quality. Although several approaches based on the convolutional neural network (CNN) have been applied to ultrasound image segmentation, they have weak generalization ability. We propose an end-to-end, multiple-channel and atrous CNN designed to extract a greater amount of semantic information for segmentation of ultrasound images. METHOD: A multiple-channel and atrous convolution network is developed, referred to as MA-Net. Similar to U-Net, MA-Net is based on an encoder-decoder architecture and includes five modules: the encoder, atrous convolution, pyramid pooling, decoder, and residual skip pathway modules. In the encoder module, we aim to capture more information with multiple-channel convolution and use large kernel convolution instead of small filters in each convolution operation. In the last layer, atrous convolution and pyramid pooling are used to extract multi-scale features. The architecture of the decoder is similar to that of the encoder module, except that up-sampling is used instead of down-sampling. Furthermore, the residual skip pathway module connects the subnetworks of the encoder and decoder to optimize learning from the deeper layer and improve the accuracy of segmentation. During the learning process, we adopt multi-task learning to enhance segmentation performance. Five types of datasets are used in our experiments. Because the original training data are limited, we apply data augmentation (e.g., horizontal and vertical flipping, random rotations, and random scaling) to our training data. We use the Dice score, precision, recall, Hausdorff distance (HD), average symmetric surface distance (ASD), and root mean square symmetric surface distance (RMSD) as the metrics for segmentation evaluation. Meanwhile, Friedman test was performed as the nonparametric statistical analysis to evaluate the algorithms. RESULTS: For the datasets of brachia plexus (BP), fetal head, and lymph node segmentations, MA-Net achieved average Dice scores of 0.776, 0.973, and 0.858, respectively; with average precisions of 0.787, 0.968, and 0.854, respectively; average recalls of 0.788, 0.978, and 0.885, respectively; average HDs (mm) of 13.591, 10.924, and 19.245, respectively; average ASDs (mm) of 4.822, 4.152, and 4.312, respectively; and average RMSDs (mm) of 4.979, 4.161, and 4.930, respectively. Compared with U-Net, U-Net++, M-Net, and Dilated U-Net, the average performance of the MA-Net increased by approximately 5.68%, 2.85%, 6.59%, 36.03%, 23.64%, and 31.71% for Dice, precision, recall, HD, ASD, and RMSD, respectively. Moreover, we verified the generalization of MA-Net segmentation to lower grade brain glioma MRI and lung CT images. In addition, the MA-Net achieved the highest mean rank in the Friedman test. CONCLUSION: The proposed MA-Net accurately segments ultrasound images with high generalization, and therefore, it offers a useful tool for diagnostic application in ultrasound images.
目的:由于信号噪声比较低且图像质量较差,超声图像分割是一项具有挑战性的任务。尽管已经有几种基于卷积神经网络(CNN)的方法被应用于超声图像分割,但它们的泛化能力较弱。我们提出了一种端到端的、多通道的空洞卷积神经网络,旨在提取更多的语义信息,以实现超声图像的分割。
方法:开发了一种多通道的空洞卷积网络,称为 MA-Net。与 U-Net 类似,MA-Net 基于编码器-解码器架构,包括五个模块:编码器、空洞卷积、金字塔池化、解码器和残差跳跃路径模块。在编码器模块中,我们旨在通过多通道卷积捕获更多信息,并在每个卷积操作中使用大核卷积代替小滤波器。在最后一层,使用空洞卷积和金字塔池化来提取多尺度特征。解码器的架构与编码器模块类似,只是使用上采样代替下采样。此外,残差跳跃路径模块将编码器和解码器的子网连接起来,以优化从更深层学习,并提高分割的准确性。在学习过程中,我们采用多任务学习来增强分割性能。我们在实验中使用了五种类型的数据集。由于原始训练数据有限,我们对训练数据应用了数据增强(例如,水平和垂直翻转、随机旋转和随机缩放)。我们使用 Dice 得分、精度、召回率、Hausdorff 距离(HD)、平均对称表面距离(ASD)和均方根对称表面距离(RMSD)作为分割评估的指标。同时,采用 Friedman 检验作为非参数统计分析方法来评估算法。
结果:对于臂丛神经(BP)、胎儿头部和淋巴结分割数据集,MA-Net 的平均 Dice 得分分别为 0.776、0.973 和 0.858;平均精度分别为 0.787、0.968 和 0.854;平均召回率分别为 0.788、0.978 和 0.885;平均 HD(mm)分别为 13.591、10.924 和 19.245;平均 ASD(mm)分别为 4.822、4.152 和 4.312;平均 RMSD(mm)分别为 4.979、4.161 和 4.930。与 U-Net、U-Net++、M-Net 和 Dilated U-Net 相比,MA-Net 的平均性能分别提高了约 5.68%、2.85%、6.59%、36.03%、23.64%和 31.71%,Dice、精度、召回率、HD、ASD 和 RMSD 分别提高了约 5.68%、2.85%、6.59%、36.03%、23.64%和 31.71%。此外,我们验证了 MA-Net 分割对低级脑胶质瘤 MRI 和肺部 CT 图像的泛化能力。此外,MA-Net 在 Friedman 检验中的平均秩最高。
结论:所提出的 MA-Net 能够准确地分割超声图像,具有较高的泛化能力,因此为超声图像的诊断应用提供了一种有用的工具。
PeerJ Comput Sci. 2023-10-20
Comput Methods Programs Biomed. 2021-9
IEEE Trans Med Imaging. 2019-3-7
Comput Methods Programs Biomed. 2021-9
Front Med (Lausanne). 2024-10-8
PeerJ Comput Sci. 2023-10-20
Front Physiol. 2023-8-22