Suppr超能文献

用于视觉跟踪的在线多专家学习

Online Multi-expert Learning for Visual Tracking.

作者信息

Li Zhetao, Wei Wei, Zhang Tianzhu, Wang Meng, Hou Sujuan, Peng Xin

出版信息

IEEE Trans Image Process. 2019 Aug 16. doi: 10.1109/TIP.2019.2931082.

Abstract

The correlation filters based trackers have achieved an excellent performance for object tracking in recent years. However, most existing methods use only one filter but ignore the information of the previous filters. In this paper, we propose a novel online multi-expert learning algorithm for visual tracking. In our proposed scheme, there are former trackers which retain the previous filters, and those trackers will give their predictions in each frame. The current tracker represents the filter of current frame, and both the current tracker and the former trackers constitute our expert ensemble. We use an adaptive Second-order Quantile strategy to learn the weights of each expert, which can take full advantage of all the experts. To simplify our model and remove some bad experts, we prune our models via a minimum entropy criterion. Finally, we propose a new update strategy to avoid the model corruption problem. Extensive experimental results on both OTB2013 and OTB2015 benchmarks demonstrate that our proposed tracker performs favorably against state-of-the-art methods.

摘要

近年来,基于相关滤波器的跟踪器在目标跟踪方面取得了优异的性能。然而,大多数现有方法仅使用一个滤波器,而忽略了先前滤波器的信息。在本文中,我们提出了一种用于视觉跟踪的新型在线多专家学习算法。在我们提出的方案中,有保留先前滤波器的前跟踪器,这些跟踪器将在每一帧给出它们的预测。当前跟踪器代表当前帧的滤波器,当前跟踪器和前跟踪器共同构成我们的专家集合。我们使用自适应二阶分位数策略来学习每个专家的权重,这可以充分利用所有专家的优势。为了简化我们的模型并去除一些不好的专家,我们通过最小熵准则对模型进行剪枝。最后,我们提出了一种新的更新策略来避免模型损坏问题。在OTB2013和OTB2015基准上的大量实验结果表明,我们提出的跟踪器优于现有最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验