Suppr超能文献

基于纳米材料的普朗特-埃林(非牛顿)流体流动,考虑布朗运动和热泳扩散以及熵产生。

Nanomaterial based flow of Prandtl-Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation.

机构信息

Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.

Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.

出版信息

Comput Methods Programs Biomed. 2019 Oct;180:105017. doi: 10.1016/j.cmpb.2019.105017. Epub 2019 Aug 8.

Abstract

BACKGROUND

The augmentation of cooling or heating in a mechanical and industrial process may create a saving in energy, decrease process time, protract the working existence of hardware and raise thermal rating. A few procedures are even influenced subjectively by the action of increased heat transport. The advancement of high performance thermal frameworks for heat transport augmentation has turned out to be well known these days. Various works has been conducted to gain an understanding of heat transport execution for their viable application to heat transport enhancement. Consequently the appearance of high heat flow procedures has made huge interest for new innovations to increase the heat transport. Therefore, entropy generation in dissipative nanomaterial flow of Prandtl-Eyring nanofluid subject to heated stretchable surface. The impact of zero shear rate viscosity is discussed through Prandtl-Eyring fluid model. Through implementation of thermodynamics second law's total entropy rate is calculated. Heat and mass transfer features are discussed using Brownian diffusion and thermophoresis. Homogeneous and heterogeneous chemical reactions are also accounted.

METHODS

Nonlinear partial differential systems are leads to ordinary systems through adequate similarity transformations. The obtained nonlinear ordinary systems are solved by Newton built in shooting technique.

RESULTS

Behaviors of different flow parameters on velocity, temperature, entropy generation rate, Bejan number and concentration are graphically discussed. Skin friction coefficient and heat transfer rate are discussed through tables. Entropy generation rate enhances for larger estimation of material parameter and Brinkman number. Bejan number is equal to one when Brinkman number is equal to zero and then progressively decreases for higher values of Brinkman number.

CONCLUSIONS

A significant increment has been observed in the velocity field versus material parameter, while opposite trends is noticed forβ.Temperature field enhances against higher values of thermophoresis and Brownian parameters while it decays through larger Prandtl number. Mass concentration upsurges versus higher thermophoresis parameter and declined via larger Brownian parameter and homogeneous and heterogeneous parameters. Furthermore, entropy rate and Bejan number show contrast impact versus material parameter and Brinkman number.

摘要

背景

在机械和工业过程中增强冷却或加热效果可能会节省能源、缩短加工时间、延长硬件的使用寿命并提高热负荷。一些工艺甚至会受到传热增加的影响。如今,为了提高传热性能,已经开发出了多种高性能热结构。为了将其有效地应用于传热强化,已经进行了各种研究以了解传热性能。因此,在高热流工艺的出现下,人们对新的创新技术产生了巨大的兴趣,以提高传热性能。因此,在耗散纳米材料流动中,考虑到受热可拉伸表面,探讨了普朗特-埃林纳米流体的熵产生问题。通过普朗特-埃林流体模型讨论了零剪切速率粘度的影响。通过执行热力学第二定律,计算了总熵产生率。通过布朗扩散和热泳讨论了传热和传质特性。还考虑了均相和非均相化学反应。

方法

通过适当的相似变换将非线性偏微分系统转化为常微分系统。通过牛顿内置的打靶技术求解得到的非线性常微分系统。

结果

通过图形讨论了不同流动参数对速度、温度、熵产生率、贝努数和浓度的影响。通过表格讨论了摩擦系数和传热率。当布兰德数为零时,贝努数等于 1,然后随着布兰德数的增加逐渐减小。当布兰德数等于零时,贝努数等于 1,然后随着布兰德数的增加逐渐减小。当布兰德数增加时,熵产生率增加,而当布兰德数增加时,贝努数减小。

结论

与材料参数相比,速度场有显著的增加,而β的趋势相反。温度场随着热泳和布朗参数的增加而增加,而随着普朗特数的增加而减小。质量浓度随着热泳参数的增加而增加,随着布朗参数和均相和非均相参数的增加而减小。此外,熵产生率和贝努数与材料参数和布兰德数呈相反的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验