Wang Yi-Gui, Barnes Ericka C, Kaya Savaș, Sharma Vinit
Department of Chemistry, Southern CT State University, 501 Crescent Street, New Haven, Connecticut, 06515.
Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey.
J Comput Chem. 2019 Dec 5;40(31):2761-2777. doi: 10.1002/jcc.26052. Epub 2019 Aug 19.
The model reactions CH X + (NH-CH=O)M ➔ CH -NH-NH═O or NH═CH-O-CH + MX (M = none, Li, Na, K, Ag, Cu; X = F, Cl, Br) are investigated to demonstrate the feasibility of Marcus theory and the hard and soft acids and bases (HSAB) principle in predicting the reactivity of ambident nucleophiles. The delocalization indices (DI) are defined in the framework of the quantum theory of atoms in molecules (QT-AIM), and are used as the scale of softness in the HSAB principle. To react with the ambident nucleophile NH═CH-O , the carbocation H C from CH X (F, Cl, Br) is actually a borderline acid according to the DI values of the forming C…N and C…O bonds in the transition states (between 0.25 and 0.49), while the counter ions are divided into three groups according to the DI values of weak interactions involving M (M…X, M…N, and M…O): group I (M = none, and Me N) basically show zero DI values; group II species (M = Li, Na, and K) have noticeable DI values but the magnitudes are usually less than 0.15; and group III species (M = Ag and Cu(I)) have significant DI values (0.30-0.61). On a relative basis, H C is a soft acid with respect to group I and group II counter ions, and a hard acid with respect to group III counter ions. Therefore, N-regioselectivity is found in the presence of group I and group II counter ions (M = Me N, Li, Na, K), while O-regioselectivity is observed in the presence of the group III counter ions (M = Ag, and Cu(I)). The hardness of atoms, groups, and molecules is also calculated with new functions that depend on ionization potential (I) and electron affinity (A) and use the atomic charges obtained from localization indices (LI), so that the regioselectivity is explained by the atomic hardness of reactive nitrogen atoms in the transition states according to the maximum hardness principle (MHP). The exact Marcus equation is derived from the simple harmonic potential energy parabola, so that the concepts of activation free energy, intrinsic activation barrier, and reaction energy are completely connected. The required intrinsic activation barriers can be either estimated from ab initio calculations on reactant, transition state, and product of the model reactions, or calculated from identity reactions. The counter ions stabilize the reactant through bridging N- and O-site of reactant of identity reactions, so that the intrinsic barriers for the salts are higher than those for free ambident anions, which is explained by the increased reorganization parameter Δr. The proper application of Marcus theory should quantitatively consider all three terms of Marcus equation, and reliably represent the results with potential energy parabolas for reactants and all products. For the model reactions, both Marcus theory and HSAB principle/MHP principle predict the N-regioselectivity when M = none, Me N, Li, Na, K, and the O-regioselectivity when M = Ag and Cu(I). © 2019 Wiley Periodicals, Inc.
研究了模型反应CH X + (NH-CH=O)M ➔ CH -NH-NH═O或NH═CH-O-CH + MX(M = 无、Li、Na、K、Ag、Cu;X = F、Cl、Br),以证明马库斯理论以及软硬酸碱(HSAB)原理在预测双亲核试剂反应活性方面的可行性。离域指数(DI)在分子中原子的量子理论(QT-AIM)框架内定义,并用作HSAB原理中的软度标度。对于与双亲核试剂NH═CH-O反应,根据过渡态中形成的C…N和C…O键的DI值(在0.25至0.49之间),CH X(F、Cl、Br)中的碳正离子H C实际上是一种边界酸,而抗衡离子根据涉及M的弱相互作用的DI值(M…X、M…N和M…O)分为三组:第一组(M = 无和Me N)基本上显示零DI值;第二组物种(M = Li、Na和K)具有明显的DI值,但大小通常小于0.15;第三组物种(M = Ag和Cu(I))具有显著的DI值(0.30 - 0.61)。相对而言,H C相对于第一组和第二组抗衡离子是软酸,相对于第三组抗衡离子是硬酸。因此,在第一组和第二组抗衡离子(M = Me N、Li、Na、K)存在下发现了N-区域选择性,而在第三组抗衡离子(M = Ag和Cu(I))存在下观察到了O-区域选择性。还使用依赖于电离势(I)和电子亲和势(A)并利用从定域指数(LI)获得的原子电荷的新函数计算了原子、基团和分子的硬度,从而根据最大硬度原理(MHP)用过渡态中反应性氮原子的原子硬度解释区域选择性。精确的马库斯方程由简单的谐振子势能抛物线推导得出,从而使活化自由能概念、本征活化能垒和反应能量完全联系起来。所需的本征活化能垒既可以通过对模型反应的反应物。过渡态和产物进行从头算计算来估计,也可以从相同反应计算得出。抗衡离子通过桥连相同反应反应物的N和O位点来稳定反应物,因此盐的本征能垒高于游离双亲阴离子的本征能垒,这可以通过增加的重组参数Δr来解释。马库斯理论的正确应用应定量考虑马库斯方程的所有三项,并用反应物和所有产物的势能抛物线可靠地表示结果。对于模型反应,马库斯理论和HSAB原理/MHP原理在M = 无、Me N、Li、Na、K时都预测N-区域选择性,在M = Ag和Cu(I)时预测O-区域选择性。© 2019威利期刊公司。