Department of Experimental Psychology, Justus Liebig University, Giessen, Germany.
Leibniz Institute of Psychology Information (ZPID), Trier, Germany.
Hum Brain Mapp. 2019 Dec 15;40(18):5172-5184. doi: 10.1002/hbm.24764. Epub 2019 Aug 20.
Exploring an object's shape by touch also renders information about its surface roughness. It has been suggested that shape and roughness are processed distinctly in the brain, a result based on comparing brain activation when exploring objects that differed in one of these features. To investigate the neural mechanisms of top-down control on haptic perception of shape and roughness, we presented the same multidimensional objects but varied the relevance of each feature. Specifically, participants explored two objects that varied in shape (oblongness of cuboids) and surface roughness. They either had to compare the shape or the roughness in an alternative-forced-choice-task. Moreover, we examined whether the activation strength of the identified brain regions as measured by functional magnetic resonance imaging (fMRI) can predict the behavioral performance in the haptic discrimination task. We observed a widespread network of activation for shape and roughness perception comprising bilateral precentral and postcentral gyrus, cerebellum, and insula. Task-relevance of the object's shape increased activation in the right supramarginal gyrus (SMG/BA 40) and the right precentral gyrus (PreCG/BA 44) suggesting that activation in these areas does not merely reflect stimulus-driven processes, such as exploring shape, but also entails top-down controlled processes driven by task-relevance. Moreover, the strength of the SMG/PreCG activation predicted individual performance in the shape but not in the roughness discrimination task. No activation was found for the reversed contrast (roughness > shape). We conclude that macrogeometric properties, such as shape, can be modulated by top-down mechanisms whereas roughness, a microgeometric feature, seems to be processed automatically.
通过触摸探索物体的形状也会提供有关其表面粗糙度的信息。有人认为,形状和粗糙度在大脑中是被分别处理的,这一结果是基于比较在探索具有这些特征之一的不同物体时大脑的激活情况得出的。为了研究大脑对触觉形状和粗糙度感知的自上而下控制的神经机制,我们呈现了相同的多维物体,但改变了每个特征的相关性。具体来说,参与者探索了两个形状(长方体的长扁度)和表面粗糙度不同的物体。他们要么在另一个强制选择任务中比较形状,要么比较粗糙度。此外,我们还检查了功能磁共振成像(fMRI)测量的大脑识别区域的激活强度是否可以预测触觉辨别任务中的行为表现。我们观察到形状和粗糙度感知的广泛激活网络,包括双侧中央前回和中央后回、小脑和脑岛。物体形状的任务相关性增加了右侧缘上回(SMG/BA 40)和右侧中央前回(PreCG/BA 44)的激活,表明这些区域的激活不仅反映了刺激驱动的过程,如探索形状,还涉及由任务相关性驱动的自上而下的控制过程。此外,SMG/PreCG 的激活强度可以预测个体在形状而非粗糙度辨别任务中的表现。对于相反的对比(粗糙度>形状),没有发现激活。我们得出的结论是,宏观几何性质,如形状,可以通过自上而下的机制来调节,而粗糙度,一个微观几何特征,似乎是自动处理的。