Suppr超能文献

自上而下的触觉形状与粗糙度感知调制的神经相关物。

Neural correlates of top-down modulation of haptic shape versus roughness perception.

机构信息

Department of Experimental Psychology, Justus Liebig University, Giessen, Germany.

Leibniz Institute of Psychology Information (ZPID), Trier, Germany.

出版信息

Hum Brain Mapp. 2019 Dec 15;40(18):5172-5184. doi: 10.1002/hbm.24764. Epub 2019 Aug 20.

Abstract

Exploring an object's shape by touch also renders information about its surface roughness. It has been suggested that shape and roughness are processed distinctly in the brain, a result based on comparing brain activation when exploring objects that differed in one of these features. To investigate the neural mechanisms of top-down control on haptic perception of shape and roughness, we presented the same multidimensional objects but varied the relevance of each feature. Specifically, participants explored two objects that varied in shape (oblongness of cuboids) and surface roughness. They either had to compare the shape or the roughness in an alternative-forced-choice-task. Moreover, we examined whether the activation strength of the identified brain regions as measured by functional magnetic resonance imaging (fMRI) can predict the behavioral performance in the haptic discrimination task. We observed a widespread network of activation for shape and roughness perception comprising bilateral precentral and postcentral gyrus, cerebellum, and insula. Task-relevance of the object's shape increased activation in the right supramarginal gyrus (SMG/BA 40) and the right precentral gyrus (PreCG/BA 44) suggesting that activation in these areas does not merely reflect stimulus-driven processes, such as exploring shape, but also entails top-down controlled processes driven by task-relevance. Moreover, the strength of the SMG/PreCG activation predicted individual performance in the shape but not in the roughness discrimination task. No activation was found for the reversed contrast (roughness > shape). We conclude that macrogeometric properties, such as shape, can be modulated by top-down mechanisms whereas roughness, a microgeometric feature, seems to be processed automatically.

摘要

通过触摸探索物体的形状也会提供有关其表面粗糙度的信息。有人认为,形状和粗糙度在大脑中是被分别处理的,这一结果是基于比较在探索具有这些特征之一的不同物体时大脑的激活情况得出的。为了研究大脑对触觉形状和粗糙度感知的自上而下控制的神经机制,我们呈现了相同的多维物体,但改变了每个特征的相关性。具体来说,参与者探索了两个形状(长方体的长扁度)和表面粗糙度不同的物体。他们要么在另一个强制选择任务中比较形状,要么比较粗糙度。此外,我们还检查了功能磁共振成像(fMRI)测量的大脑识别区域的激活强度是否可以预测触觉辨别任务中的行为表现。我们观察到形状和粗糙度感知的广泛激活网络,包括双侧中央前回和中央后回、小脑和脑岛。物体形状的任务相关性增加了右侧缘上回(SMG/BA 40)和右侧中央前回(PreCG/BA 44)的激活,表明这些区域的激活不仅反映了刺激驱动的过程,如探索形状,还涉及由任务相关性驱动的自上而下的控制过程。此外,SMG/PreCG 的激活强度可以预测个体在形状而非粗糙度辨别任务中的表现。对于相反的对比(粗糙度>形状),没有发现激活。我们得出的结论是,宏观几何性质,如形状,可以通过自上而下的机制来调节,而粗糙度,一个微观几何特征,似乎是自动处理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1675/6864886/340686f1456b/HBM-40-5172-g001.jpg

相似文献

1
Neural correlates of top-down modulation of haptic shape versus roughness perception.
Hum Brain Mapp. 2019 Dec 15;40(18):5172-5184. doi: 10.1002/hbm.24764. Epub 2019 Aug 20.
2
Top-down modulation of shape and roughness discrimination in active touch by covert attention.
Atten Percept Psychophys. 2019 Feb;81(2):462-475. doi: 10.3758/s13414-018-1625-5.
3
4
Neural Evidence of Hierarchical Cognitive Control during Haptic Processing: An fMRI Study.
eNeuro. 2018 Nov 27;5(6). doi: 10.1523/ENEURO.0295-18.2018. eCollection 2018 Nov-Dec.
6
A PET study of somatosensory discrimination in man. microgeometry versus macrogeometry.
Eur J Neurosci. 1994 Jan 1;6(1):137-48. doi: 10.1111/j.1460-9568.1994.tb00255.x.
8
Are visual texture-selective areas recruited during haptic texture discrimination?
Neuroimage. 2014 Jul 1;94:129-137. doi: 10.1016/j.neuroimage.2014.03.013. Epub 2014 Mar 17.
9
Decoding visual roughness perception: an fMRI study.
Somatosens Mot Res. 2018 Sep-Dec;35(3-4):212-217. doi: 10.1080/08990220.2018.1527761. Epub 2018 Dec 28.
10
Decoding Accuracy in Supplementary Motor Cortex Correlates with Perceptual Sensitivity to Tactile Roughness.
PLoS One. 2015 Jun 11;10(6):e0129777. doi: 10.1371/journal.pone.0129777. eCollection 2015.

引用本文的文献

1
An fMRI study of crossmodal emotional congruency and the role of semantic content in the aesthetic appreciation of naturalistic art.
Front Neurosci. 2025 Jul 30;19:1516070. doi: 10.3389/fnins.2025.1516070. eCollection 2025.
2
Neural substrates underlying multisensory stiffness perception via active touch and dynamic visual feedback.
Imaging Neurosci (Camb). 2025 Mar 5;3. doi: 10.1162/imag_a_00493. eCollection 2025.
4
Brain mechanisms for processing caress-like touch in skin-picking disorder.
Eur Arch Psychiatry Clin Neurosci. 2024 Feb;274(1):235-243. doi: 10.1007/s00406-023-01669-9. Epub 2023 Aug 23.
5
Neural dynamics of illusory tactile pulling sensations.
iScience. 2022 Aug 26;25(9):105018. doi: 10.1016/j.isci.2022.105018. eCollection 2022 Sep 16.
6
Global surface features contribute to human haptic roughness estimations.
Exp Brain Res. 2022 Mar;240(3):773-789. doi: 10.1007/s00221-021-06289-0. Epub 2022 Jan 16.

本文引用的文献

1
Top-down modulation of shape and roughness discrimination in active touch by covert attention.
Atten Percept Psychophys. 2019 Feb;81(2):462-475. doi: 10.3758/s13414-018-1625-5.
2
The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data.
J Neurosci Methods. 2017 Jan 30;276:56-72. doi: 10.1016/j.jneumeth.2016.10.019. Epub 2016 Nov 8.
3
Neural mechanisms of selective attention in the somatosensory system.
J Neurophysiol. 2016 Sep 1;116(3):1218-31. doi: 10.1152/jn.00637.2015. Epub 2016 Jun 22.
4
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data.
Vision Res. 2016 May;122:105-123. doi: 10.1016/j.visres.2016.02.002. Epub 2016 May 2.
5
The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content.
Neuroinformatics. 2015 Jul;13(3):353-66. doi: 10.1007/s12021-014-9258-x.
7
The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.
J Neurophysiol. 2014 Oct 15;112(8):1894-902. doi: 10.1152/jn.00177.2014. Epub 2014 Jul 2.
8
Are visual texture-selective areas recruited during haptic texture discrimination?
Neuroimage. 2014 Jul 1;94:129-137. doi: 10.1016/j.neuroimage.2014.03.013. Epub 2014 Mar 17.
10
Diversity of the inferior frontal gyrus--a meta-analysis of neuroimaging studies.
Behav Brain Res. 2011 Nov 20;225(1):341-7. doi: 10.1016/j.bbr.2011.06.022. Epub 2011 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验