Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
Max Planck Institute for Biology of Ageing, PO Box 41 06 23, 50866, Cologne, Germany.
Nat Commun. 2019 Aug 20;10(1):3346. doi: 10.1038/s41467-019-11311-9.
Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.
预测长期死亡率需要收集临床数据,这通常很繁琐。因此,我们使用一个经过良好标准化的代谢组学平台,在 44168 名个体(基线年龄为 18-109 岁)的循环中识别与全因死亡率相关的代谢预测因子,其中 5512 人在随访期间死亡。我们应用基于荟萃分析结果的逐步(前向-后向)程序,确定 14 种与全因死亡率独立相关的循环生物标志物。总的来说,这些关联在男性和女性以及不同年龄组中相似。随后我们表明,包含确定的生物标志物和性别(C 统计量分别为 0.837 和 0.830)的模型预测 5 年和 10 年死亡率的准确性优于包含死亡率传统危险因素的模型(C 统计量分别为 0.772 和 0.790)。需要进一步研究将鉴定出的代谢谱用作死亡率预测因子或临床研究中的替代终点。