Urru Andrea, González Ballester Miguel Angel, Zhang Chong
BCN-MedTech, DTIC, Universitat Pompeu Fabra, Barcelona, Spain.
ICREA, Barcelona, Spain.
Methods Mol Biol. 2019;2040:423-448. doi: 10.1007/978-1-4939-9686-5_20.
Tracking cells is one of the main challenges in biology, as it often requires time-consuming annotations and the images can have a low signal-to-noise ratio while containing a large number of cells. Here we present two methods for detecting and tracking cells using the open-source Fiji and ilastik frameworks. A straightforward approach is described using Fiji, consisting of a pre-processing and segmentation phase followed by a tracking phase, based on the overlapping of objects along the image sequence. Using ilastik, a classifier is trained through manual annotations to both detect cells over the background and be able to recognize false detections and merging cells. We describe these two methods in a step-by-step fashion, using as example a time-lapse microscopy movie of HeLa cells.
追踪细胞是生物学中的主要挑战之一,因为这通常需要耗时的注释,而且图像的信噪比可能很低,同时还包含大量细胞。在这里,我们展示了两种使用开源的Fiji和ilastik框架检测和追踪细胞的方法。我们描述了一种使用Fiji的直接方法,该方法包括预处理和分割阶段,然后是基于图像序列中对象重叠的追踪阶段。使用ilastik时,通过手动注释训练一个分类器,以检测背景中的细胞,并能够识别错误检测和合并细胞。我们以HeLa细胞的延时显微镜电影为例,逐步描述这两种方法。