Innovation and Core Technology Management, Olympus Corporation, Kuboyama 2-3, Hachioji, Tokyo, 192-8512, Japan.
Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
Sci Rep. 2022 Feb 17;12(1):2702. doi: 10.1038/s41598-022-06269-6.
Cell tracking is one of the most critical tools for time-lapse image analysis to observe cell behavior and cell lineages over a long period of time. However, the accompanying graphical user interfaces are often difficult to use and do not incorporate seamless manual correction, data analysis tools, or simple training set design tools if it is machine learning based. In this paper, we introduce our cell tracking software "LIM Tracker". This software has a conventional tracking function consisting of recognition processing and link processing, a sequential search-type tracking function based on pattern matching, and a manual tracking function. LIM Tracker enables the seamless use of these functions. In addition, the system incorporates a highly interactive and interlocking data visualization method, which displays analysis result in real time, making it possible to flexibly correct the data and reduce the burden of tracking work. Moreover, recognition functions with deep learning (DL) are also available, which can be used for a wide range of targets including stain-free images. LIM Tracker allows researchers to track living objects with good usability and high versatility for various targets. We present a tracking case study based on fluorescence microscopy images (NRK-52E/EKAREV-NLS cells or MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen cells) and phase contrast microscopy images (Glioblastoma-astrocytoma U373 cells). LIM Tracker is implemented as a plugin for ImageJ/Fiji. The software can be downloaded from https://github.com/LIMT34/LIM-Tracker .
细胞追踪是延时成像分析中观察细胞行为和细胞谱系的最关键工具之一。然而,伴随的图形用户界面通常难以使用,并且如果基于机器学习,则不包含无缝的手动校正、数据分析工具或简单的训练集设计工具。在本文中,我们介绍了我们的细胞追踪软件 "LIM Tracker"。该软件具有常规的追踪功能,包括识别处理和链接处理、基于模式匹配的顺序搜索型追踪功能以及手动追踪功能。LIM Tracker 可以无缝地使用这些功能。此外,该系统还采用了高度互动和连锁的数据可视化方法,实时显示分析结果,从而可以灵活地修正数据并减少追踪工作的负担。此外,还提供了具有深度学习(DL)的识别功能,可用于包括无染色图像在内的广泛目标。LIM Tracker 使研究人员能够针对各种目标,以良好的可用性和高度的通用性来追踪活体对象。我们提供了基于荧光显微镜图像(NRK-52E/EKAREV-NLS 细胞或 MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen 细胞)和相差显微镜图像(Glioblastoma-astrocytoma U373 细胞)的追踪案例研究。LIM Tracker 作为 ImageJ/Fiji 的插件实现。该软件可从 https://github.com/LIMT34/LIM-Tracker 下载。