Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States.
J Am Chem Soc. 2019 Sep 25;141(38):15288-15300. doi: 10.1021/jacs.9b07338. Epub 2019 Sep 11.
Indoleamine 2,3-dioxygenase (IDO1) is a heme enzyme that catalyzes the oxygenation of the indole ring of tryptophan to afford -formylkynurenine. This activity significantly suppresses the immune response, mediating inflammation and autoimmune reactions. These consequential effects are regulated through redox changes in the heme cofactor of IDO1, which autoxidizes to the inactive ferric state during turnover. This change in redox status increases the lability of the heme cofactor leading to further suppression of activity. The cell can thus regulate IDO1 activity through the supply of heme and reducing agents. We show here that polysulfides bind to inactive ferric IDO1 and reduce it to the oxygen-binding ferrous state, thus activating IDO1 to maximal turnover even at low, physiologically significant concentrations. The on-rate for hydrogen disulfide binding to ferric IDO1 was found to be >10 M s at pH 7 using stopped-flow spectrometry. Fe K-edge XANES and EPR spectroscopy indicated initial formation of a low-spin ferric sulfur-bound species followed by reduction to the ferrous state. The μM affinity of polysulfides for IDO1 implicates these polysulfides as important signaling factors in immune regulation through the kynurenine pathway. Tryptophan significantly enhanced the relatively lower-affinity binding of hydrogen sulfide to IDO1, inspiring the use of the small molecule 3-mercaptoindole (3MI), which selectively binds to and activates ferric IDO1. 3MI sustains turnover by catalytically transferring reducing equivalents from glutathione to IDO1, representing a novel strategy of upregulating innate immunosuppression for treatment of autoimmune disorders. Reactive sulfur species are thus likely unrecognized immune-mediators with potential as therapeutic agents through these interactions with IDO1.
色氨酸 2,3-双加氧酶(IDO1)是一种血红素酶,可催化色氨酸吲哚环的氧化,生成甲酰犬尿氨酸。这种活性显著抑制免疫反应,介导炎症和自身免疫反应。这些后果是通过 IDO1 血红素辅基的氧化还原变化来调节的,IDO1 在周转过程中自氧化为非活性三价铁状态。这种氧化还原状态的变化增加了血红素辅基的不稳定性,导致进一步抑制其活性。因此,细胞可以通过血红素和还原剂的供应来调节 IDO1 的活性。我们在这里表明,多硫化物与非活性三价铁 IDO1 结合,并将其还原为氧结合的二价铁状态,从而使 IDO1 即使在低生理浓度下也能达到最大周转率。使用停流光谱法在 pH 7 下发现,氢二硫化物与三价铁 IDO1 的结合速率常数>10 M s-1。Fe K 边 XANES 和 EPR 光谱表明,初始形成低自旋三价铁硫结合物,然后还原为二价铁状态。多硫化物对 IDO1 的μM 亲和力表明,这些多硫化物是通过犬尿酸途径进行免疫调节的重要信号因子。色氨酸显著增强了氢硫化物与 IDO1 结合的相对较低亲和力,激发了小分子 3-巯基吲哚(3MI)的使用,3MI 选择性地与三价铁 IDO1 结合并激活其活性。3MI 通过将还原当量从谷胱甘肽催化转移到 IDO1 上来维持周转,代表了一种通过与 IDO1 相互作用上调先天免疫抑制作用来治疗自身免疫疾病的新策略。因此,活性硫物种可能是未被识别的免疫调节剂,具有通过与 IDO1 相互作用作为治疗剂的潜力。