Suppr超能文献

人工耳蜗的双耳优化:在不牺牲头影效应益处的情况下摒弃频率成分

Binaural Optimization of Cochlear Implants: Discarding Frequency Content Without Sacrificing Head-Shadow Benefit.

作者信息

Sheffield Sterling W, Goupell Matthew J, Spencer Nathaniel J, Stakhovskaya Olga A, Bernstein Joshua G W

机构信息

Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida, USA.

National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.

出版信息

Ear Hear. 2020 May/Jun;41(3):576-590. doi: 10.1097/AUD.0000000000000784.

Abstract

OBJECTIVES

Single-sided deafness cochlear-implant (SSD-CI) listeners and bilateral cochlear-implant (BI-CI) listeners gain near-normal levels of head-shadow benefit but limited binaural benefits. One possible reason for these limited binaural benefits is that cochlear places of stimulation tend to be mismatched between the ears. SSD-CI and BI-CI patients might benefit from a binaural fitting that reallocates frequencies to reduce interaural place mismatch. However, this approach could reduce monaural speech recognition and head-shadow benefit by excluding low- or high-frequency information from one ear. This study examined how much frequency information can be excluded from a CI signal in the poorer-hearing ear without reducing head-shadow benefits and how these outcomes are influenced by interaural asymmetry in monaural speech recognition.

DESIGN

Speech-recognition thresholds for sentences in speech-shaped noise were measured for 6 adult SSD-CI listeners, 12 BI-CI listeners, and 9 normal-hearing listeners presented with vocoder simulations. Stimuli were presented using nonindividualized in-the-ear or behind-the-ear head-related impulse-response simulations with speech presented from a 70° azimuth (poorer-hearing side) and noise from 70° (better-hearing side), thereby yielding a better signal-to-noise ratio (SNR) at the poorer-hearing ear. Head-shadow benefit was computed as the improvement in bilateral speech-recognition thresholds gained from enabling the CI in the poorer-hearing, better-SNR ear. High- or low-pass filtering was systematically applied to the head-related impulse-response-filtered stimuli presented to the poorer-hearing ear. For the SSD-CI listeners and SSD-vocoder simulations, only high-pass filtering was applied, because the CI frequency allocation would never need to be adjusted downward to frequency-match the ears. For the BI-CI listeners and BI-vocoder simulations, both low and high pass filtering were applied. The normal-hearing listeners were tested with two levels of performance to examine the effect of interaural asymmetry in monaural speech recognition (vocoder synthesis-filter slopes: 5 or 20 dB/octave).

RESULTS

Mean head-shadow benefit was smaller for the SSD-CI listeners (7 dB) than for the BI-CI listeners (14 dB). For SSD-CI listeners, frequencies <1236 Hz could be excluded; for BI-CI listeners, frequencies <886 or >3814 Hz could be excluded from the poorer-hearing ear without reducing head-shadow benefit. Bilateral performance showed greater immunity to filtering than monaural performance, with gradual changes in performance as a function of filter cutoff. Real and vocoder-simulated CI users with larger interaural asymmetry in monaural performance had less head-shadow benefit.

CONCLUSIONS

The "exclusion frequency" ranges that could be removed without diminishing head-shadow benefit are interpreted in terms of low importance in the speech intelligibility index and a small head-shadow magnitude at low frequencies. Although groups and individuals with greater performance asymmetry gained less head-shadow benefit, the magnitudes of these factors did not predict the exclusion frequency range. Overall, these data suggest that for many SSD-CI and BI-CI listeners, the frequency allocation for the poorer-ear CI can be shifted substantially without sacrificing head-shadow benefit, at least for energetic maskers. Considering the two ears together as a single system may allow greater flexibility in discarding redundant frequency content from a CI in one ear when considering bilateral programming solutions aimed at reducing interaural frequency mismatch.

摘要

目的

单侧耳聋人工耳蜗(SSD-CI)使用者和双侧人工耳蜗(BI-CI)使用者获得了接近正常水平的头影效应,但双耳效应有限。双耳效应有限的一个可能原因是,两耳之间的耳蜗刺激部位往往不匹配。SSD-CI和BI-CI患者可能会从双耳选配中受益,这种选配重新分配频率以减少双耳间的部位不匹配。然而,这种方法可能会通过排除来自一只耳朵的低频或高频信息而降低单耳言语识别和头影效应。本研究考察了在不降低头影效应的情况下,较差听力耳的CI信号中可以排除多少频率信息,以及这些结果如何受到单耳言语识别中的双耳不对称性的影响。

设计

对6名成年SSD-CI使用者、12名BI-CI使用者和9名正常听力者进行言语清晰度噪声中的句子言语识别阈值测量,采用声码器模拟呈现刺激。使用非个性化的耳内或耳后头部相关脉冲响应模拟呈现刺激,语音从70°方位角(较差听力侧)呈现,噪声从70°(较好听力侧)呈现,从而在较差听力耳产生更好的信噪比(SNR)。头影效应计算为较差听力、较高SNR耳启用CI后双侧言语识别阈值的改善。对呈现给较差听力耳的头部相关脉冲响应滤波刺激系统地应用高通或低通滤波。对于SSD-CI使用者和SSD声码器模拟,仅应用高通滤波,因为CI频率分配永远不需要向下调整以在频率上匹配双耳。对于BI-CI使用者和BI声码器模拟,同时应用低通和高通滤波。对正常听力者进行两种性能水平的测试,以考察单耳言语识别中的双耳不对称性(声码器合成滤波器斜率:5或20 dB/倍频程)的影响。

结果

SSD-CI使用者的平均头影效应(约7 dB)比BI-CI使用者(约14 dB)小。对于SSD-CI使用者,低于1236 Hz的频率可以排除;对于BI-CI使用者,低于886 Hz或高于3814 Hz的频率可以从较差听力耳排除而不降低头影效应。双侧性能显示出比单耳性能对滤波更强的耐受性,随着滤波器截止频率的变化,性能逐渐改变。单耳性能中双耳不对称性较大的真实和声码器模拟CI使用者的头影效应较小。

结论

在不降低头影效应的情况下可以去除的“排除频率”范围,根据其在言语可懂度指数中的低重要性以及低频处较小的头影幅度来解释。尽管性能不对称性较大的组和个体获得的头影效应较小,但这些因素的大小并不能预测排除频率范围。总体而言,这些数据表明,对于许多SSD-CI和BI-CI使用者,较差听力耳CI的频率分配可以大幅改变而不牺牲头影效应,至少对于能量掩蔽而言。当考虑旨在减少双耳频率不匹配的双侧编程解决方案时,将双耳视为一个单一系统可能允许在丢弃来自一只耳朵CI的冗余频率内容方面有更大的灵活性。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验