Digan William, Wack Maxime, Looten Vincent, Neuraz Antoine, Burgun Anita, Rance Bastien
INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université Paris-Descartes, Université Sorbonne Paris Cité, France.
Department of Medical Informatics, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
Stud Health Technol Inform. 2019 Aug 21;264:103-107. doi: 10.3233/SHTI190192.
A significant part of medical knowledge is stored as unstructured free text. However, clinical narratives are known to contain duplicated sections due to clinicians' copy/paste parts of a former report into a new one. In this study, we aim at evaluating the duplications found within patient records in more than 650,000 French clinical narratives. We adapted a method to identify efficiently duplicated zones in a reasonable time. We evaluated the potential impact of duplications in two use cases: the presence of (i) treatments and/or (ii) relative dates. We identified an average rate of duplication of 33%. We found that 20% of the document contained drugs mentioned only in duplicated zones and that 1.45% of the document contained mentions of relative dates in duplicated zone, that could potentially lead to erroneous interpretation. We suggest the systematic identification and annotation of duplicated zones in clinical narratives for information extraction and temporal-oriented tasks.
医学知识的很大一部分是以非结构化自由文本的形式存储的。然而,由于临床医生会将先前报告的部分内容复制粘贴到新报告中,临床记录中存在重复部分。在本研究中,我们旨在评估65万多份法语临床记录中患者记录内发现的重复情况。我们采用了一种方法,以便在合理时间内高效识别重复区域。我们在两个用例中评估了重复的潜在影响:(i)治疗方法和/或(ii)相对日期的存在情况。我们确定平均重复率为33%。我们发现,20%的文档包含仅在重复区域提及的药物,1.45%的文档在重复区域包含相对日期的提及,这可能会导致错误解读。我们建议对临床记录中的重复区域进行系统识别和注释,以用于信息提取和面向时间的任务。