Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA.
J Chem Phys. 2019 Aug 21;151(7):074903. doi: 10.1063/1.5091115.
Ionic microgels are soft colloidal particles, composed of crosslinked polymer networks, which ionize and swell when dispersed in a good solvent. Swelling of these permeable, compressible particles involves a balance of electrostatic, elastic, and mixing contributions to the single-particle osmotic pressure. The electrostatic contribution depends on the distributions of mobile counterions and coions and of fixed charge on the polymers. Within the cell model, we employ two complementary methods to derive the electrostatic osmotic pressure of ionic microgels. In Poisson-Boltzmann (PB) theory, we minimize a free energy functional with respect to the electrostatic potential to obtain the bulk pressure. From the pressure tensor, we extract the electrostatic and gel contributions to the total pressure. In a statistical mechanical approach, we vary the free energy with respect to microgel size to obtain exact relations for the microgel electrostatic osmotic pressure. We present results for planar, cylindrical, and spherical geometries. For models of membranes and microgels with fixed charge uniformly distributed over their surface or volume, we derive analogs of the contact value theorem for charged colloids. We validate these relations by solving the PB equation and computing ion densities and osmotic pressures. When implemented within PB theory, the two methods yield identical electrostatic osmotic pressures for surface-charged microgels. For volume-charged microgels, the exact electrostatic osmotic pressure equals the average of the corresponding PB profile over the gel volume. We demonstrate that swelling of ionic microgels depends on the variation of the electrostatic pressure inside the particle and discuss implications for interpreting experiments.
离子微凝胶是由交联聚合物网络组成的软胶体颗粒,当分散在良溶剂中时会发生电离和溶胀。这些可渗透、可压缩颗粒的溶胀涉及到单颗粒渗透压的静电、弹性和混合贡献的平衡。静电贡献取决于可移动抗衡离子和共离子以及聚合物上固定电荷的分布。在细胞模型中,我们采用两种互补的方法来推导离子微凝胶的静电渗透压。在泊松-玻尔兹曼(PB)理论中,我们通过最小化自由能泛函相对于静电势来获得体压。从压力张量中,我们提取静电和凝胶对总压力的贡献。在统计力学方法中,我们通过微凝胶尺寸的自由能变化来获得微凝胶静电渗透压的精确关系。我们展示了平面、圆柱和球形几何形状的结果。对于具有固定电荷均匀分布在其表面或体积上的膜和微凝胶模型,我们推导出了带电胶体接触值定理的类似物。我们通过求解 PB 方程和计算离子密度和渗透压来验证这些关系。当在 PB 理论中实现时,这两种方法为表面带电微凝胶产生相同的静电渗透压。对于体积带电的微凝胶,静电渗透压等于相应 PB 分布在凝胶体积上的平均值。我们证明了离子微凝胶的溶胀取决于颗粒内部静电压力的变化,并讨论了对解释实验的影响。