Suppr超能文献

反相液相色谱梯度分离利尿剂中的多尺度优化与遗传算法比较。

Multi-scale optimisation vs. genetic algorithms in the gradient separation of diuretics by reversed-phase liquid chromatography.

机构信息

Departament de Química Analítica, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, Spain.

Departament de Química Analítica, Universitat de València, c/ Dr. Moliner 50, 46100, Burjassot, Spain.

出版信息

J Chromatogr A. 2020 Jan 4;1609:460427. doi: 10.1016/j.chroma.2019.460427. Epub 2019 Aug 10.

Abstract

Multi-linear gradients are a convenient solution to get separation of complex samples by modulating carefully the gradient slope, in order to accomplish the local selectivity needs for each particular solute cluster. These gradients can be designed by trial-and-error according to the chromatographer experience, but this strategy becomes quickly inappropriate for complex separations. More evolved solutions imply the sequential construction of multi-segmented gradients. However, this strategy discards part of the search space in each step of the construction and, again, cannot deal properly with very complex samples. When the complexity is too large, the only valid alternative for finding the best gradient is the use of global search methods, such as genetic algorithms (GAs). Recently, a new global approach where the level of detail is increased along the search has been proposed, namely Multi-scale optimisation (MSO). In this strategy, cubic splines are applied to build intermediate curves to define any arbitrary solvent variation function. Subdivision schemes are used to generate the cubic splines and control their level of detail. The search was subjected to a number of restrictions, such as avoiding long elution and favouring a balanced peak distribution. The aim of this work is evaluating and comparing the results of GAs and MSO. Both approaches were tested with a set of 14 diuretics and probenecid, eluted with acetonitrile-water mixtures using a C18 column. Satisfactory baseline resolution was obtained with an analysis time of 15-16 min. We found that GAs optimisation offered results equivalent to those provided by MSO, when the penalisation parameters were included in the cost function.

摘要

多元线性梯度是一种方便的解决方案,可以通过仔细调节梯度斜率来实现复杂样品的分离,以满足每个特定溶质簇的局部选择性需求。这些梯度可以根据色谱师的经验通过反复试验来设计,但这种策略对于复杂的分离很快就不适用了。更先进的解决方案意味着需要顺序构建多段梯度。然而,这种策略在构建的每一步都会放弃一部分搜索空间,而且仍然不能很好地处理非常复杂的样品。当复杂性太大时,找到最佳梯度的唯一有效方法是使用全局搜索方法,如遗传算法(GA)。最近,提出了一种新的全局方法,即多尺度优化(MSO),该方法增加了搜索过程中的细节水平。在这种策略中,三次样条被应用于构建中间曲线,以定义任意溶剂变化函数。细分方案用于生成三次样条并控制其细节水平。搜索受到了一些限制,例如避免长洗脱和有利于平衡峰分布。本工作的目的是评估和比较 GA 和 MSO 的结果。两种方法都用一组 14 种利尿剂和丙磺舒进行了测试,用 C18 柱洗脱乙腈-水混合物。在 15-16 分钟的分析时间内,获得了令人满意的基线分离。我们发现,当惩罚参数包含在成本函数中时,GA 优化提供的结果与 MSO 提供的结果相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验