IEEE Trans Med Imaging. 2020 Apr;39(4):888-897. doi: 10.1109/TMI.2019.2936921. Epub 2019 Aug 22.
Bioelectric source analysis in the human brain from scalp electroencephalography (EEG) signals is sensitive to the conductivities of different head tissues. The conductivity of tissues is subject dependent, so non-invasive methods for conductivity estimation are necessary to fine tune EEG models. To do so, the EEG forward problem solution (so-called lead field matrix) must be computed for a large number of conductivity configurations. Computing a lead field requires a matrix inversion which is computationally intensive for realistic head models. Thus, the required time for computing a large number of lead fields can become impractical. In this work, we propose to approximate the lead field matrix for a set of conductivity configurations, using the exact solution only for a small set of support points in the conductivity space. Our approach accelerates the computation time, while controlling the approximation error. Our method is tested on simulated and measured EEG data for brain and skull conductivity estimation. This test demonstrates that the approximation does not introduce any bias and runs significantly faster than if exact lead field were to be computed.
从头皮脑电图 (EEG) 信号中分析人体大脑的生物电源对不同头部组织的电导率敏感。组织的电导率是因人而异的,因此需要非侵入性的电导率估计方法来对 EEG 模型进行微调。为此,必须针对大量电导率配置来计算 EEG 正问题解决方案(所谓的导联场矩阵)。计算导联场需要进行矩阵求逆,对于实际的头部模型来说,这是计算密集型的。因此,计算大量导联场所需的时间可能会变得不切实际。在这项工作中,我们建议使用仅在电导率空间中的一小部分支持点上的精确解来近似导联场矩阵。我们的方法可以加速计算时间,同时控制逼近误差。我们的方法在模拟和测量的 EEG 数据上进行了脑和颅骨电导率估计的测试。该测试表明,这种逼近不会引入任何偏差,并且比计算精确导联场的速度快得多。