文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RSATree:用于灵活视觉查询的大规模表格数据集的分布感知数据表示

RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query.

作者信息

Mei Honghui, Chen Wei, Wei Yating, Hu Yuanzhe, Zhou Shuyue, Lin Bingru, Zhao Ying, Xia Jiazhi

出版信息

IEEE Trans Vis Comput Graph. 2020 Jan;26(1):1161-1171. doi: 10.1109/TVCG.2019.2934800. Epub 2019 Aug 20.


DOI:10.1109/TVCG.2019.2934800
PMID:31443022
Abstract

Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.

摘要

分析人员通常会研究由图表(如直方图和分箱散点图)所表示的数据的统计聚合得出的数据分布,以可视化和分析大规模数据集。通过这样的过程隐式执行聚合查询。数据集一直都极其庞大;因此,应通过计算预定义的数据立方体来加快响应时间。然而,查询限于预处理数据立方体的预定义分箱模式。这种限制阻碍了分析人员灵活调整视觉规范以有效研究数据中的隐含模式。特别是,RSATree通过利用三种方案实现任意查询和灵活的分箱策略,这三种方案分别是:基于R树的空间分区方案以捕捉数据分布、局部敏感哈希技术以实现对数据项的局部性保持随机访问,以及求和面积表方案以支持具有线性计算复杂度的聚合值的交互式查询。本研究提出并实现了一个基于网络的视觉查询系统,该系统支持对具有用户可调整粒度的大规模表格数据进行视觉规范、查询和探索。我们通过对真实世界数据集进行各种实验并分析时间和空间复杂度,证明了我们方法的效率和实用性。

相似文献

[1]
RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query.

IEEE Trans Vis Comput Graph. 2020-1

[2]
Visually defining and querying consistent multi-granular clinical temporal abstractions.

Artif Intell Med. 2011-12-15

[3]
SAFE: SPARQL Federation over RDF Data Cubes with Access Control.

J Biomed Semantics. 2017-2-1

[4]
Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data.

IEEE Trans Vis Comput Graph. 2017-1

[5]
VIGOR: Interactive Visual Exploration of Graph Query Results.

IEEE Trans Vis Comput Graph. 2017-8-29

[6]
Interactive exploration of implicit and explicit relations in faceted datasets.

IEEE Trans Vis Comput Graph. 2013-12

[7]
SmartCube: An Adaptive Data Management Architecture for the Real-Time Visualization of Spatiotemporal Datasets.

IEEE Trans Vis Comput Graph. 2020-1

[8]
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

Proc ACM SIGSPATIAL Int Conf Adv Inf. 2013-11

[9]
Nanocubes for real-time exploration of spatiotemporal datasets.

IEEE Trans Vis Comput Graph. 2013-12

[10]
Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation.

IEEE Trans Vis Comput Graph. 2008

引用本文的文献

[1]
A survey of urban visual analytics: Advances and future directions.

Comput Vis Media (Beijing). 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索