Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China.
Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
Appl Environ Microbiol. 2019 Oct 16;85(21). doi: 10.1128/AEM.01700-19. Print 2019 Nov 1.
The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (HO). In this study, we used , an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the and genes are OxyR dependent, and are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of and These findings underscore the particular importance of Trx in the bacterial OP stress response. The Trx and Grx systems are deeply involved in bacterial responses to HO-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the or genes are directly controlled by OxyR or OhrR, expression of and is induced by -butyl hydroperoxide (-BHP). We further show that the and genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.
硫氧还蛋白 (Trx) 和谷氧还蛋白 (Grx) 抗氧化系统深入参与细菌对氧化应激的反应,但迄今为止,我们对这些系统在应对除过氧化氢 (HO) 以外的活性氧 (ROS) 方面的作用知之甚少。在这项研究中,我们使用 作为研究模型,因为它具有功能交织的 ROS 响应调节剂 OxyR 和 OhrR,来研究 Trx 和 Grx 在氧化应激反应中的作用。我们发现 Trx1 是主要的硫醇/二硫键氧化还原系统,在正常条件下,其不存在时 Grx 系统变得必不可少。尽管在野生型中被 Trx1 所掩盖,但 Trx2 在过度产生时可以完全替代 Trx1 在生理学上的作用。Trx1 是 OxyR 作为抑制剂发挥作用所必需的,但更重要的是,通过介导 OhrR 的氧化还原状态而不是 OP 清除剂 OhrA,在细胞对有机过氧化物 (OP) 的反应中发挥关键作用。虽然 和 基因都不是 OxyR 依赖性的,但 和 基因受到 OhrR 的间接影响。额外的数据表明,谷胱甘肽的耗竭可能是触发 和 诱导表达的信号。这些发现强调了 Trx 在细菌 OP 应激反应中的特殊重要性。Trx 和 Grx 系统深入参与细菌对 HO 诱导的氧化应激的反应。然而,对于它们在应对其他 ROS(如有机过氧化物 (OPs))方面的作用知之甚少。在这项研究中,我们使用 作为研究模型,研究了 Trx/Grx 和 OxyR/OhrR 之间的相互作用。我们表明,Trxs 介导转录 OP 响应调节剂 OhrR 的氧化还原状态。虽然 或 基因都不是直接受 OxyR 或 OhrR 控制,但 和 的表达受 -丁基过氧化物 (-BHP) 诱导。我们进一步表明, 和 基因对谷胱甘肽 (GSH) 耗竭的影响而不是氧化做出反应。这些发现强调了 Trx 在细菌 OP 应激反应中的特殊重要性。