Suppr超能文献

评估使用单个惯性传感器通过机器学习来评估关节角度的情况。

Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor.

作者信息

Argent Rob, Drummond Sean, Remus Alexandria, O'Reilly Martin, Caulfield Brian

机构信息

Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.

Beacon Hospital, Dublin, Ireland.

出版信息

J Rehabil Assist Technol Eng. 2019 Aug 19;6:2055668319868544. doi: 10.1177/2055668319868544. eCollection 2019 Jan-Dec.

Abstract

INTRODUCTION

Joint angle measurement is an important objective marker in rehabilitation. Inertial measurement units may provide an accurate and reliable method of joint angle assessment. The objective of this study was to assess whether a single sensor with the application of machine learning algorithms could accurately measure hip and knee joint angle, and investigate the effect of inertial measurement unit orientation algorithms and person-specific variables on accuracy.

METHODS

Fourteen healthy participants completed eight rehabilitation exercises with kinematic data captured by a 3D motion capture system, used as the reference standard, and a wearable inertial measurement unit. Joint angle was calculated from the single inertial measurement unit using four machine learning models, and was compared to the reference standard to evaluate accuracy.

RESULTS

Average root-mean-squared error for the best performing algorithms across all exercises was 4.81° (SD = 1.89). The use of an inertial measurement unit orientation algorithm as a pre-processing step improved accuracy; however, the addition of person-specific variables increased error with average RMSE 4.99° (SD = 1.83°).

CONCLUSIONS

Hip and knee joint angle can be measured with a good degree of accuracy from a single inertial measurement unit using machine learning. This offers the ability to monitor and record dynamic joint angle with a single sensor outside of the clinic.

摘要

引言

关节角度测量是康复过程中的一个重要客观指标。惯性测量单元可能提供一种准确且可靠的关节角度评估方法。本研究的目的是评估应用机器学习算法的单个传感器能否准确测量髋关节和膝关节角度,并研究惯性测量单元定向算法和个体特定变量对准确性的影响。

方法

14名健康参与者完成了八项康复训练,同时通过作为参考标准的3D运动捕捉系统和可穿戴惯性测量单元采集运动学数据。使用四种机器学习模型从单个惯性测量单元计算关节角度,并与参考标准进行比较以评估准确性。

结果

所有训练中表现最佳的算法的平均均方根误差为4.81°(标准差=1.89)。使用惯性测量单元定向算法作为预处理步骤可提高准确性;然而,添加个体特定变量会增加误差,平均均方根误差为4.99°(标准差=1.83°)。

结论

使用机器学习,可从单个惯性测量单元以较高的准确度测量髋关节和膝关节角度。这使得在诊所外使用单个传感器监测和记录动态关节角度成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55a/6700879/55c87c816795/10.1177_2055668319868544-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验