Suppr超能文献

运用广义自回归条件异方差(GARCH)模型估计加密货币在熊市期间的波动性。

Estimating the volatility of cryptocurrencies during bearish markets by employing GARCH models.

作者信息

Kyriazis Νikolaos A, Daskalou Kalliopi, Arampatzis Marios, Prassa Paraskevi, Papaioannou Evangelia

机构信息

Department of Economics, University of Thessaly, 28 October 78 Street, 38333, Volos, Greece.

出版信息

Heliyon. 2019 Aug 13;5(8):e02239. doi: 10.1016/j.heliyon.2019.e02239. eCollection 2019 Aug.

Abstract

This study examines the volatility of certain cryptocurrencies and how they are influenced by the three highest capitalization digital currencies, namely the Bitcoin, the Ethereum and the Ripple. We use daily data for the period 1 January 2018-16 September 2018, which represents the bearish market of cryptocurrencies. The impact of the decline of these three cryptocurrencies on the returns of the other virtual currencies is examined with models of the ARCH and GARCH family, as well as the DCC-GARCH. The main conclusion of the study is that the majority of cryptocurrencies are complementary with Bitcoin, Ethereum and Ripple and that no hedging abilities exist among principal digital currencies in distressed times.

摘要

本研究考察了某些加密货币的波动性,以及它们如何受到市值最高的三种数字货币(即比特币、以太坊和瑞波币)的影响。我们使用了2018年1月1日至2018年9月16日的每日数据,这段时间代表了加密货币的熊市。通过自回归条件异方差(ARCH)和广义自回归条件异方差(GARCH)族模型以及动态条件相关系数GARCH(DCC-GARCH)模型,研究了这三种加密货币价格下跌对其他虚拟货币回报的影响。该研究的主要结论是,大多数加密货币与比特币、以太坊和瑞波币呈互补关系,并且在市场低迷时期,主要数字货币之间不存在套期保值能力。

相似文献

1
Estimating the volatility of cryptocurrencies during bearish markets by employing GARCH models.
Heliyon. 2019 Aug 13;5(8):e02239. doi: 10.1016/j.heliyon.2019.e02239. eCollection 2019 Aug.
2
Volatility Interdependence Between Cryptocurrencies, Equity, and Bond Markets.
Comput Econ. 2022 Sep 22:1-31. doi: 10.1007/s10614-022-10318-7.
3
The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies.
PLoS One. 2021 Jan 29;16(1):e0245904. doi: 10.1371/journal.pone.0245904. eCollection 2021.
4
Modelling and forecasting risk dependence and portfolio VaR for cryptocurrencies.
Empir Econ. 2023 Jan 16:1-26. doi: 10.1007/s00181-023-02360-7.
6
Impact of COVID-19 effective reproductive rate on cryptocurrency.
Financ Innov. 2022;8(1):49. doi: 10.1186/s40854-022-00354-5. Epub 2022 May 16.
8
Tail spillover effects between cryptocurrencies and uncertainty in the gold, oil, and stock markets.
Financ Innov. 2023;9(1):92. doi: 10.1186/s40854-023-00498-y. Epub 2023 May 3.
9
The effect of COVID-19 pandemic on return-volume and return-volatility relationships in cryptocurrency markets.
Chaos Solitons Fractals. 2022 Sep;162:112443. doi: 10.1016/j.chaos.2022.112443. Epub 2022 Jul 14.
10
Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market.
Int Rev Financ Anal. 2021 Jan;73:101613. doi: 10.1016/j.irfa.2020.101613. Epub 2020 Oct 20.

引用本文的文献

1
Do returns and volatility spillovers exist across tech stocks, cryptocurrencies and NFTs?
Heliyon. 2024 Jan 12;10(2):e24615. doi: 10.1016/j.heliyon.2024.e24615. eCollection 2024 Jan 30.
2
Visualizing profitability: A heatmap approach to evaluate Bitcoin futures trading using VMA trading rules.
Heliyon. 2023 Oct 21;9(11):e21376. doi: 10.1016/j.heliyon.2023.e21376. eCollection 2023 Nov.
3
Turn-of-the-candle effect in bitcoin returns.
Heliyon. 2023 Mar 2;9(3):e14236. doi: 10.1016/j.heliyon.2023.e14236. eCollection 2023 Mar.
4
5
Time-varying properties of asymmetric volatility and multifractality in Bitcoin.
PLoS One. 2021 Feb 1;16(2):e0246209. doi: 10.1371/journal.pone.0246209. eCollection 2021.
6
Herding behaviour in digital currency markets: An integrated survey and empirical estimation.
Heliyon. 2020 Aug 20;6(8):e04752. doi: 10.1016/j.heliyon.2020.e04752. eCollection 2020 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验