Cheng Jie
School of Computing and Mathematics, Keele University, MacKay Building, Keele, ST5 5BG UK.
Empir Econ. 2023 Jan 16:1-26. doi: 10.1007/s00181-023-02360-7.
In this paper, we investigate the co-dependence and portfolio value-at-risk of cryptocurrencies, with the Bitcoin, Ethereum, Litecoin and Ripple price series from January 2016 to December 2021, covering the crypto crash and pandemic period, using the generalized autoregressive score (GAS) model. We find evidence of strong dependence among the virtual currencies with a dynamic structure. The empirical analysis shows that the GAS model smoothly handles volatility and correlation changes, especially during more volatile periods in the markets. We perform a comprehensive comparison of out-of-sample probabilistic forecasts for a range of financial assets and backtests and the GAS model outperforms the classic DCC (dynamic conditional correlation) GARCH model and provides new insights into multivariate risk measures.
在本文中,我们使用广义自回归得分(GAS)模型,研究了加密货币的相互依存关系和投资组合风险价值,所采用的比特币、以太坊、莱特币和瑞波币价格序列涵盖了2016年1月至2021年12月,包括加密货币崩盘和疫情期间。我们发现虚拟货币之间存在具有动态结构的强相关性证据。实证分析表明,GAS模型能够平稳地处理波动性和相关性变化,尤其是在市场波动较大的时期。我们对一系列金融资产的样本外概率预测和回测进行了全面比较,结果显示GAS模型优于经典的动态条件相关(DCC)GARCH模型,并为多变量风险度量提供了新的见解。