Suppr超能文献

FKRR-MVSF:一种基于模糊核岭回归模型的多视图序列特征方法,通过周的五步法则识别 DNA 结合蛋白。

FKRR-MVSF: A Fuzzy Kernel Ridge Regression Model for Identifying DNA-Binding Proteins by Multi-View Sequence Features via Chou's Five-Step Rule.

机构信息

School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China.

Engineering Research Center of Internet of Things Applied Technology, Ministry of Education, Wuxi 214122, China.

出版信息

Int J Mol Sci. 2019 Aug 26;20(17):4175. doi: 10.3390/ijms20174175.

Abstract

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm is employed to combine multiple features. Finally, a Fuzzy Kernel Ridge Regression (FKRR) model is built to detect DNA-binding proteins. Compared with other methods, our model achieves good results. Our method obtains an accuracy of 83.26% and 81.72% on two benchmark datasets (PDB1075 and compared with PDB186), respectively.

摘要

DNA 结合蛋白在细胞代谢中发挥着重要作用。在生物实验室中,DNA 结合蛋白的检测方法包括酵母单杂交方法、细菌单杂交方法和 X 射线晶体学方法等,但这些方法涉及大量的人力、物力和时间。近年来,已经提出了许多基于计算的方法来检测 DNA 结合蛋白。本文提出了一种基于多视图序列特征的模糊核岭回归模型(FKRR-MVSF)的机器学习方法来识别 DNA 结合蛋白。首先,从蛋白质序列中提取多视图序列特征。然后,采用多核学习(MKL)算法来组合多个特征。最后,构建模糊核岭回归(FKRR)模型来检测 DNA 结合蛋白。与其他方法相比,我们的模型取得了较好的结果。我们的方法在两个基准数据集(PDB1075 和 PDB186)上的准确率分别为 83.26%和 81.72%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/886e/6747228/905aea77f1b0/ijms-20-04175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验