Gili Albert, Bischoff Benjamin, Simon Ulla, Schmidt Franziska, Kober Delf, Görke Oliver, Bekheet Maged F, Gurlo Aleksander
Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institute of Materials Science and Technology, Faculty III-Process Sciences, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany.
Division 5.4 Ceramic Processing and Biomaterials, Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany.
Membranes (Basel). 2019 Aug 26;9(9):108. doi: 10.3390/membranes9090108.
Dual-phase membranes for high-temperature carbon dioxide separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement these membranes industrially, the carbon dioxide permeability must be improved. In this study, CeSmO (SDC) and CeSmFeO (FSDC) ceramic powders were used to form the skeleton in dual-phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membrane's ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system.
用于高温二氧化碳分离的双相膜已成为一种有前景的技术,可减少人为温室气体排放,特别是作为燃煤发电厂燃烧前和燃烧后的分离技术。为了在工业上应用这些膜,必须提高二氧化碳渗透率。在本研究中,CeSmO(SDC)和CeSmFeO(FSDC)陶瓷粉末用于形成双相膜的骨架。使用MgO作为环境友好型造孔剂,可以控制膜的孔隙率和微观结构,以便比较膜陶瓷相的影响。使用ICP-OES、HSM、重量分析、SEM/EDX和XRD对陶瓷粉末和所得膜进行了表征,并使用高温膜渗透装置对二氧化碳通量密度进行了量化。与SDC膜相比,FSDC膜中添加铁后二氧化碳渗透率略有增加,这主要是由于铁对硅质杂质的清除作用,以及粘性流烧结导致微晶尺寸增加的额外潜在贡献。FSDC系统渗透率的提高以及MgO对微观结构的适当控制可以进一步扩展,以优化该膜系统中的二氧化碳渗透率。