González-Varela Daniela, Gómez-García J Francisco, Tavizon Gustavo, Pfeiffer Heriberto
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de México, México.
Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de México, México.
J Environ Sci (China). 2024 Jun;140:219-229. doi: 10.1016/j.jes.2023.07.018. Epub 2023 Jul 20.
This work shows the synthesis, characterization and evaluation of dense-ceramic membranes made of CeGdO-LaNiO (CG-LN) composites, where the fluorite-perovskite ratio (CG:LN) was varied as follows: 75:25, 80:20 and 85:15 wt.%. Supports were initially characterized by XRD, SEM and electrical conductivity (using vacuum and oxygen atmospheres), to determine the composition, microstructural and ionic-electronic conductivity properties. Later, supports were infiltrated with an eutectic carbonates mixture, producing the corresponding dense dual-phase membranes, in which CO permeation tests were conducted. Here, CO permeation experiments were performed from 900 to 700°C, in the presence and absence of oxygen (flowed in the sweep membrane side). Results showed that these composites possess high CO permeation properties, where the O addition significantly improves the ionic conduction on the sweep membrane side. Specifically, the GC80-LN20 composition presented the best results due to the following physicochemical characteristics: high electronic and ionic conductivity, appropriate porosity, interconnected porous channels, as well as thermal and chemical stabilities between the composite support and carbonate phases.
这项工作展示了由CeGdO-LaNiO(CG-LN)复合材料制成的致密陶瓷膜的合成、表征和评估,其中萤石-钙钛矿比例(CG:LN)按以下方式变化:75:25、80:20和85:15重量百分比。载体最初通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电导率(使用真空和氧气气氛)进行表征,以确定其组成、微观结构和离子-电子传导性能。随后,载体用共晶碳酸盐混合物进行渗透,制成相应的致密双相膜,并在其中进行CO渗透测试。在此,CO渗透实验在900至700°C的温度下进行,测试时存在和不存在氧气(在吹扫膜侧流动)。结果表明,这些复合材料具有较高的CO渗透性能,其中添加O显著提高了吹扫膜侧的离子传导。具体而言,GC80-LN20组成呈现出最佳结果,这归因于以下物理化学特性:高电子和离子传导率、适当的孔隙率、相互连接的多孔通道,以及复合载体与碳酸盐相之间的热稳定性和化学稳定性。