School of Chemistry and Biochemistry , Yeungnam University , 280 Daehak-Ro , Gyeongsan , Gyeongbuk 38541 , Republic of Korea.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33525-33534. doi: 10.1021/acsami.9b07717. Epub 2019 Sep 10.
Quantum dots (QDs) can serve as an attractive Förster resonance energy transfer (FRET) donor for DNA assay due to their excellent optical properties. However, the specificity and sensitivity of QD-based FRET analysis are prominently reduced by nonspecific DNA adsorption and poor colloidal stability during DNA hybridization, which hinders the practical applications of QDs as a biosensing platform. Here, we report subnanomolar FRET assay of DNA through the stabilization of DNA/QD interface using DNA-functionalized QDs with phosphorothioated single-stranded DNA (pt-ssDNA) as a multivalent ligand in an aqueous solution. In situ DNA functionalization was achieved during the aqueous synthesis of CdTe/CdS QDs, resulting in the maximum photoluminescence quantum yields of 76.9% at an emission wavelength of 732 nm. Conventional monothiolated ssDNA-capped QDs exhibited particle aggregation and photoluminescence (PL) quenching during DNA hybridization at 70 °C due to the dissociation of surface ligands. Such colloidal instability induced the nonspecific adsorption of DNA, resulting in false-positive signal and decreased sensitivity with the limit of detection (LOD) of 16.1 nM. In contrast, the pt-ssDNA-functionalized QDs maintained their colloidal stability and PL properties at elevated temperatures. The LOD of the pt-ssDNA-functionalized QDs was >30 times lower (0.47 nM) while maintaining the high specificity to a target sequence because the strong multivalent binding of pt-ssDNA to the surface of QDs prevents the detachment of pt-ssDNA and nonspecific adsorption of DNA. The study suggests that the ligand design to stabilize the surface of QDs in an aqueous milieu is critically important for the high performance of QDs for specific DNA assay.
量子点 (QD) 由于其出色的光学特性,可用作 DNA 分析中具有吸引力的Förster 共振能量转移 (FRET) 供体。然而,由于非特异性 DNA 吸附和 DNA 杂交过程中较差的胶体稳定性,QD 基 FRET 分析的特异性和灵敏度显著降低,这阻碍了 QD 作为生物传感平台的实际应用。在这里,我们通过使用带有硫代磷酸单链 DNA (pt-ssDNA) 的 DNA 功能化 QD 作为多价配体在水溶液中稳定 DNA/QD 界面,报告了亚纳摩尔级别的 DNA FRET 分析。在 CdTe/CdS QD 的水相合成过程中实现了原位 DNA 功能化,导致在发射波长为 732nm 时最大荧光量子产率为 76.9%。由于表面配体的解离,在 70°C 进行 DNA 杂交时,常规的单硫代 ssDNA 封端 QD 表现出粒子聚集和荧光(PL)猝灭。这种胶体不稳定性导致 DNA 的非特异性吸附,从而产生假阳性信号并降低检测限(LOD)至 16.1 nM。相比之下,pt-ssDNA 功能化 QD 在高温下保持其胶体稳定性和 PL 特性。pt-ssDNA 功能化 QD 的 LOD 高 30 多倍(0.47 nM),同时保持对靶序列的高特异性,因为 pt-ssDNA 与 QD 表面的强多价结合防止 pt-ssDNA 的脱离和 DNA 的非特异性吸附。该研究表明,在水相环境中稳定 QD 表面的配体设计对于 QD 进行特定 DNA 分析的高性能至关重要。