Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan.
Mol Pharmacol. 2019 Nov;96(5):600-608. doi: 10.1124/mol.119.117333. Epub 2019 Aug 27.
Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.
细胞色素 P450 酶 3A(CYP3A)的诱导反应对孕烷 X 受体(PXR)激活剂显示出种属特异性差异。为了研究人类 PXR 激活剂对人 CYP3A 的诱导,我们生成了 PXR 和 CYP3A 的双重人源化小鼠模型。通过使用含有完整人类 CYP3A 基因座的小鼠人工染色体(MAC)载体生成 CYP3A 人源化小鼠(hCYP3A-MAC 鼠系),并将其与 PXR 人源化小鼠交配,其中鼠 PXR 的配体结合域被替换为人 PXR 的配体结合域,导致双重人源化小鼠(hCYP3A-MAC/hPXR 鼠系)。口服人类 PXR 激活剂利福平可增加 hCYP3A-MAC/hPXR 小鼠肝脏 CYP3A4 mRNA 的表达和三唑仑(TRZ)1'-和 4-羟化活性、CYP3A 探针活性。hCYP3A-MAC/hPXR 小鼠口服 TRZ 后,血浆 TRZ 浓度显著降低。此外,TRZ 口服后,用利福平处理的 hCYP3A-MAC/hPXR 小鼠的肠道中羟化 TRZ 的形成增加。hCYP3A-MAC/hPXR 小鼠门静脉血中 1'-和 4-羟基 TRZ 的浓度也因利福平治疗而增加。这些结果表明,hCYP3A-MAC/hPXR 小鼠系可能是一种有用的模型,可预测人 PXR 依赖性 CYP3A4 底物在肝脏和肠道中代谢的诱导。意义陈述:我们生成了 CYP3A 和 PXR 的双重人源化小鼠系。简要地说,通过使用含有完整人类 CYP3A 基因座的小鼠人工染色体载体生成 CYP3A 人源化小鼠,该载体包含完整的人类 CYP3A 基因座,然后与 PXR 人源化小鼠交配,其中小鼠 PXR 的配体结合域被替换为人 PXR 的配体结合域。利福平是一种典型的人类 PXR 激活剂,可增强 hCYP3A4 和三唑仑(一种典型的 CYP3A 底物)在 CYP3A/PXR 人源化小鼠肝脏中的表达。利福平处理后,首次通过口服三唑仑后对肠道切片进行质谱成像和液相色谱与串联质谱分析代谢物浓度相结合,显示 CYP3A/PXR 人源化小鼠肠道中三唑仑代谢增强。