Suppr超能文献

9K和300K温度下通过4.5纳米长的刚性平面有机分子线的相干共振电子隧穿

Coherent Resonant Electron Tunneling at 9 and 300 K through a 4.5 nm Long, Rigid, Planar Organic Molecular Wire.

作者信息

Ouyang Chun, Hashimoto Kohei, Tsuji Hayato, Nakamura Eiichi, Majima Yutaka

机构信息

Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

Surface and Interface Science Laboratory, RIKEN, Saitama 351-0198, Japan.

出版信息

ACS Omega. 2018 May 10;3(5):5125-5130. doi: 10.1021/acsomega.8b00559. eCollection 2018 May 31.

Abstract

Organic molecular wires that operate stably at ambient temperatures are a necessary first step toward practical and useful molecular-scale electronic devices, which have thus far been hampered by many factors, including the structural and electron configurational instability of organic molecules. We report here that a single disulfanyl carbon-bridged oligo(phenylenevinylene) (COPV6) molecule embedded between thermally stable electroless Au-plated electrodes of a 4 nm nanogap undergoes coherent resonant tunneling at both 9 and 300 K and functions even after storage in air at room temperature. Such enormous stability is ascribed to the unique structural characteristics of COPV6, that is, rigidity, planarity, thermal stability, resistivity against oxidation and reduction, and an organic insulating sheath that protects the π-system. When sandwiched between the gaps without pinning, this molecule behaves as a Coulomb island with sequential single-electron tunneling at 9 K that disappears at 300 K while maintaining a stable electron flow.

摘要

能够在环境温度下稳定运行的有机分子导线是迈向实用且有用的分子尺度电子器件的必要第一步,而到目前为止,这类器件受到诸多因素的阻碍,包括有机分子的结构和电子构型不稳定性。我们在此报告,嵌入4纳米纳米间隙的热稳定化学镀金电极之间的单个二硫烷基碳桥联聚对苯撑乙烯(COPV6)分子在9K和300K时均会发生相干共振隧穿,甚至在室温下于空气中储存后仍能发挥作用。这种极高的稳定性归因于COPV6独特的结构特征,即刚性、平面性、热稳定性、抗氧化还原能力以及保护π体系的有机绝缘鞘。当夹在间隙之间且无固定时,该分子在9K时表现为具有顺序单电子隧穿的库仑岛,在300K时这种现象消失,但仍保持稳定的电子流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b6/6641898/3543bf9886fd/ao-2018-00559c_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验